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Abstract. The Gauss Image problem is a generalization to the question originally posed
by Aleksandrov, who studied the existence of the convex body with prescribed Aleksandrov’s
integral curvature. A simple discrete case of the Gauss Image Problem can be formulated
as follows: given a finite set of directions in Rn and the same number of unit vectors, does
there exist a convex polytope in Rn containing the origin in its interior with vertices at
given directions such that each normal cone at the vertex contains exactly one of the given
vectors in its interior?

We pose a combinatorial problem, called the Assignment Problem, for discrete measures.
It is shown that the discrete Gauss Image Problem and the Assignment Problem are equiva-
lent. We establish a geometric condition for measures which solves the Assignment Problem
and, hence, the Gauss Image Problem. We also show that generically, the Assignment Prob-
lem has a solution. The proper reformulation for the uniqueness questions is also addressed
and analyzed. The work establishes interesting connections of the Discrete Gauss Image
problem to Hall’s marriage theorem and transportation polytopes.
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1. Introduction

The Brunn-Minkowski theory, originating back to Brunn in the 19th century, is the core
part of the study of geometry of convex bodies. An essential part of it is the study of
Minkowski problems, characterizing measures associated with convex bodies. These prob-
lems have a huge influence on Brunn-Minkowski theory and mathematics outside of convexity,
such as the subjects of fully non-linear partial differential equations, optimal mass transport,
and others.

More recently, two extensions of Brunn-Minkowski theory were considered. The Lp Brunn-
Minkowski theory was initially proposed by Firey in [17] but seriously investigated only later
by Lutwak [25]. And the dual Brunn-Minkowski theory, which originated with Lutwak [26],
on dual mixed volumes. Similarly, many analogues of Minkowski problems were established in
the Lp Brunn-Minkowski theory and the dual Brunn-Minkowski Theory. The study of these
problems are an essential part of the development of these previously mentioned subjects.
Furthermore, they have lead to some non-trivial and important conjectures, such as, for
example, the log-Brunn-Minkowski inequality (see [6, 13, 20, 24, 42]). We refer the reader
to Chapters 8 and 9 of Schneider’s textbook [43] and to articles [8, 11, 12, 21–23, 25, 27–31,
34–36, 44, 48–52] for an overview of Minkowski problems. And refer to [5, 7, 33, 37, 45] for
information on the regularity of the solutions.

The Gauss Image problem, introduced in [14], is an analogue of the Minkowski problem.
The objective is to characterize push forward measures by the multi-valued radial Gauss
map, also known as the radial Gauss Image. Many important measures, such as the integral
curvature defined by Aleksandrov [3], surface are measures of Aleksandrov-Fenchel-Jessen [2]
and, more recently, the dual curvature measures [22], arise through this push forward. This
motivates the characterization of push forward measures by the radial Gauss map; that is,
the Gauss Image Problem. Since dual curvature measures are pushforwards by the Gauss
map, this problem can be seen as vital element of connecting Brunn-Minkowski theory with
dual Brunn-Minkowski theory [22].

The radial Gauss image map is a composition of the multivalued Gauss map and the radial
map. More precisely, given K ∈ Kn

o (where Kn
o is the set of convex bodies containing the

origin in their interiors), we define the radial Gauss image of ω ⊂ Sn−1 as:

(1.1) αααK(ω) =
!

x∈rK(ω)

N(K, x) ⊂ Sn−1.

Here rK : Sn−1 → ∂K is the radial map of K, which is defined for u ∈ Sn−1 by rK(u) = ru ∈
∂K, with positive r and N(K, x) is the set of all outer unit normals to a boundary point of
K, defined below:

(1.2) N(K, x) = {v ∈ Sn−1 : (y − x) · v ≤ 0 for all y ∈ K}.
Definition 1.1. Suppose λ is a submeasure on Sn−1 defined on a spherical Lebesgue measur-
able sets and K ∈ Kn

o . Then λ(K, ·), the Gauss image measure of λ via K, is a submeasure
defined as the pushforward of the λ via map αααK . That is for each borel ω ⊂ Sn−1

(1.3) λ(αααK(ω)) = λ(K,ω)

Given two spherical Borel measures λ and µ, the Gauss Image Problem asks what are
necessary and sufficient conditions for a body K ∈ Kn

o to satisfy µ = λ(K, ·). If the solution
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exists, we are also interested in the question of uniqueness. When λ is spherical Lebesgue
measure, λ(K, ·) is known as Aleksandrov’s integral curvature of the body K [3]. When λ is
Federer’s (n − 1)th curvature measure, λ(K, ·) is the surface area measure of Alekxandrov-
Fenchel-Jessen [2]. Finally, more the more recently defined dual curvature in dual Brunn-
Minkowski theory [22] is known as the Gauss image measure.

Special cases of the Gauss Image Problem were investigated by numerous people. When λ
is spherical Lebesgue measure, it was studied by Aleksandrov in [1] and [3]. Different proofs
were given by Oliker [36] and Bertand [9]. When one of the measures is assumed to be
absolutely continuous, the question was studied in [14] by Böröczky, Lutwak, Yang, Zhang
and Zhao (which implies previous results). In this case, λ(K, ·) is always a Borel measure.
There, the Aleksandrov relation was introduced to attack the problem:

Definition 1.2. Two Borel measures µ and λ on Sn−1 are called Aleksandrov related if

(1.4) λ(Sn−1) = µ(Sn−1) > µ(ω) + λ(ω∗),

for each compact, spherically convex (See Section 2) set ω ⊂ Sn−1. The set ω∗ is defined as
a polar set:

(1.5) ω∗ :=
"

u∈ω
{v ∈ Sn−1 : uv ≤ 0}

The following solution to the Gauss Image problem was obtained:

Theorem 1.3 (K. J. Böröczky, E. Lutwak, D. Yang, G. Y. Zhang and Y. M. Zhao [14]).
Suppose µ and λ are Borel measures on Sn−1 and λ is absolutely continuous. If µ and λ are
Aleksandrov related, then there exists a K ∈ Kn

o such that µ = λ(K, ·).

Moreover, it was shown that the Aleksandrov relation is a necessary assumption for the
existence of a solution to the Gauss Image problem, if one of the measures is assumed to be
absolutely continuous and strictly positive on open sets [14]. In this case, the solution to
the Gauss Image problem is shown to be unique up to a dilation. The Lp analogues of the
Aleksandrov problem were considered by Huang, Lutwak, Yang and Zhang in [21], by Mui
in [32], and by Zhao in [50]. The Lp analogue of the Gauss Image Problem was considered
in [46] by C. Wu, D. Wu, and Xiang.

In this work, we would like to address the discrete direction of the Gauss Image Problem.
In the most simple form, it can be formulated as follows:

In Rn, suppose we are given two sets of unit vectors {v1 . . . vm} and {u1 . . . um}. Suppose
{v1 . . . vm} ⊂ Sn−1 are not contained in any closed hemisphere. Let P be the set of convex
polytopes containing the origin in their interiors with vertices at the vi directions. We ask
the following question: what are necessary and sufficient conditions on vectors vi, uj for the
existence of a convex polytope P ∈ P , such that every normal cone at each vertex of P
contains exactly one vector from the set {u1 . . . um} in its interior, and each vector from the
set {u1 . . . um} is contained in exactly one normal cone?

Considering the dual problem, this simply stated question can be seen to be very similar
in spirit to the famous question posed by Minkowski for polytopes: the Minkowski problem
asks whether there exist a polytope with specified directions and measures of the facets. We
ask about the existence of a polytope with specified directions of the facets, such that each
facet is penetrated by exactly one out of specified vectors in its interior.
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Given discrete measures µ and λ:

λ =
k#

j=1

λjδuj

µ =
m#

i=1

µiδvi .

(1.6)

We introduce the Discrete Gauss Image problem, which asks whether there exists a body
K ∈ Kn

o such that µ = λ(K, ·). If such a K exists, we can always find a polytope P ∈ Kn
o

with vertices rK(vi), that is vertices at radial directions vi, such that µ = λ(K, ·) = λ(P, ·)
(see Proposition 4.1). Thus, it suffices to restrict the search for the polytope solution with
vertices at vi directions.

The problem, in its most generality, has a natural algebraic obstacle. Firstly, note that if
a polytope P with vertices rP (vi) is a solution to the Discrete Gauss Image Problem, then
the uj’s are contained in the interiors of normal cones of vertices. Otherwise, if some uj is
contained on the boundary of normal cone, λ(P, ·) would not be a finite measure. Define a

function f from {1 . . . k} → {1 . . .m} such that fP (j) = i, if and only if uj ∈ ˚αααP (vi). Then
if P is a solution, µ({vi}) = λ(P, {vi}), and we obtain for each i:

(1.7)
#

j∈f−1
P (i)

λj = µi.

Given two discrete measures, such function might not exist in principle. Therefore, each Dis-
crete Gauss Image problem comes with the combinatorial problem of finding an f assigning
vectors uj to normal cones vi, satisfying the condition above on the weights. This motivates
the next definition.

Definition 1.4. Given two discrete measures λ and µ, we associate the set of assignment
functions :

(1.8) Fµ,λ :=
$
f : {1 . . . k} → {1 . . .m} |

#

j∈f−1(i)

λj = µi

%
.

We call f ∈ F an assignment function with respect to µ and λ. If for f ∈ F there exists a a

polytope P ∈ Kn
o with vertices rP (vi) solving the Gauss Image problem and uj ∈ ˚αααK(vf(j)),

then we call f a solution function. Sometimes we write Fµ,λ to specify the measures.

The Discrete Gauss Image problem has effectively two steps. The first is a combinatorial
problem: what are necessary and sufficient conditions for Fµ,λ ∕= ∅? The second is a geomet-
ric problem: does there exist a solution to the Gauss Image problem for a given assignment
function?

In this work, we restrict our attention to the equal-weights λ problem (∀j λj = 1). The
equal-weights λ problem captures all varieties of a “geometric part” of the Discrete Gauss
Image problem, as any problem is reducible to the Discrete Gauss Image problem with
equal-weight λ. For a detailed explanation, see Remark at the end of the Weak Aleksandrov
Condition Section.

The Discrete Gauss Image problem Suppose λ is a discrete equal-weight (∀j λj = 1)
measure on Sn−1, and µ is a discrete measure on Sn−1. What are the necessary and sufficient
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conditions, on λ and µ, so that there exists a body K ∈ Kn
o such that

(1.9) µ = λ(K, ·)?

And if such body exists, to what extent it is unique?

When µ and λ are simultaneously equal-weight measures, we have a good subclass of
problems where the combinatorial step is trivial. In order to guarantee the existence of a
solution, the measures should clearly satisfy µ(Sn−1) = λ(Sn−1). Thus, if λ and µ have
equal-weights, then they should have the same number of summands. Thus, the assignment
functions for these problem are just permutations. Recalling that we can concentrate on
polytopes with vertices at the vi directions, the problem, has a very elementary statement:
Given two sets of the same number of unit vectors vi and uj, is there a convex polytope P
containing the origin with vertices at the vi directions, such that each normal cone at any
vertex rP (vi) contains exactly one vector uj in its interior? This recovers the simple case of
the problem established earlier.

In order to attack the problem, we introduce the weaker version of the Aleksandrov condi-
tion from [14]. This condition turns out to be a necessary condition for two discrete measures
to be related by a convex body. Moreover, if one views the assignment function as a matching
in a bipartite graph with vertices {uj} and {vi}, this condition is equivalent to assumption
in Hall’s marriage theorem. See Lemma 4.3.

Definition 1.5. Two discrete measures µ and λ on Sn−1 are called weak Aleksandrov related
if

(1.10) λ(Sn−1) = µ(Sn−1) ≥ µ(ω) + λ(ω∗)

for each compact, spherically convex set ω ⊂ Sn−1.

It turns out that solution to the Discrete Gauss Image problem is equivalent to the fol-
lowing combinatorial problem:

The Assignment Problem Suppose λ is a discrete equal-weight measure on Sn−1, and µ
is a discrete measure on Sn−1. For each f ∈ Fµ,λ, define

(1.11) A(f) :=
k#

j=1

log ujvf(j)

where the log of negative values is defined as −∞.
What are the necessary and sufficient conditions, on λ and µ, such that A(·) is maximized

by exactly one f ∈ Fµ,λ, and also for this f that A(f) > −∞?

We establish the equivalence of the Discrete Gauss Image problem and the Assignment
Problem. That is, given a discrete equal-weight λ and a discrete µ on Sn−1, there exists
a solution to the Gauss Image Problem if and only if A(·) is uniquely maximized by some
f ∈ Fµ,λ with A(f) > −∞. See Theorem 5.1.

We later proceed to investigate the Assignment Problem. We show that the part about
A(f) > −∞ is equivalent to the weak Aleksandrov condition, see Lemma 4.3. We establish
the geometric condition which solves the Assignment Problem. The condition is the following:

Edge-normal loop free measures Discrete measures µ and λ are called edge-normal loop
free if there does not exist a piecewise linear closed path with at least two vertices such
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that every vertex is on the different ray {tvi | t > 0} and each segment is perpendicular to
different uj. (In the case of two vertices, two edges coincide.)

With this condition we obtain the following:

Theorem 1.6. Let λ be a discrete equal-weight measure and µ be a discrete measure. Suppose
they are weak Aleksandrov related, edge-normal loop free and µ is not concentrated on a closed
hemisphere. Then there exist a unique f ∈ Fµ,λ which maximizes A(·). In particular, there
exist a polytope P ∈ Kn

o with vertices rP (vi) solving the Discrete Gauss Image Problem:

(1.12) µ = λ(K, ·)

We also investigate the Assignment Problem and the Discrete Gauss Image Problem from
generic point of view where we obtain:

Theorem 1.7. Suppose we are given m ∈ N and coefficients µi ∈ N. Consider all pairs
of discrete measures µ and discrete equal-weight measures λ satisfying the weak Aleksandrov
condition, such that µ is not concentrated on a closed hemisphere. Then for a generic measure
in this class, there exists a polytope P ∈ Kn

o with vertices rP (vi) satisfying

(1.13) µ = λ(P, ·).

Since the solution to the Discrete Gauss Image problem is always non-unique if it exists,
see Proposition 5.12, the proper reformulation for the uniqueness question is the uniqueness
of the assignment functional. To this extent, we show that the assignment functional is

unique. That is, if K,L ∈ Kn
o satisfy µ = λ(K, ·) = λ(K, ·), then uj ∈ ˚αααK(vi) if and only if

uj ∈ ˚αααL(vi).
Let us make some remarks regarding the proofs. In many analogues and variations of

Minkowski problems, one can usually construct a functional on the set of convex bodies such
that body which maximizes the functional turns out to be the solution. For these problems,
it is usually easy to verify that the convex body maximizing the functional is a solution to
the given problem, yet it is usually sufficiently harder to show the existence of the body
maximizing the functional. Such functional, see Equation (2.13), is indeed applicable to
this problem. Yet, something opposite happens: it is easy to see that there exists a body
maximizing the functional, but the maximizing body is not necessarily a solution, contrary
to the case of when λ is absolutely continuous in [14], for example. The difficulty lies in the

interior part of the condition uj ∈ ˚αααK(vj).
We give two different proofs for the equivalence between the Discrete Gauss Image problem

and the Assignment Problem. The main proof has the following structure. First we con-
struct a sequence of absolutely continuous measures λε → λ, which are weak Aleksandrov
related to µ. Then we show the existence of a solution Kε for the λε, µ-problem under the
weak Aleksandrov assumption. We then study the subsequence convergence of Kε and find
conditions on when the limiting body is the solution to the original question. The last part
relies on a generalization of the Birkhoff-von Neumann theorem and transportation poly-
topes. The second proof, for a special case of when both measures are equal-weight is given
in section 6. It is shorter but more computational. It uses new computational results from
recent works of Wyczesany on mass transport [47]. The connection here is not unexpected,
as one can reformulate the Gauss Image Problem as a mass transport problem. Moreover,
the results in [47] are advances (besides other things) on the well-known cyclic monotonicity
condition introduced by Rockafellar in [40].
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Finally, the main proof relies on the existence of the solution to the Gauss Image problem
for when λ is an absolutely continuous measure that is weak Aleksandrov related to the
discrete measure µ. This, more technical result, has been moved to our second paper to not
distract the reader from the main focus of this work. We keep the statements of this and
similar results from our second paper in the Appendix for convenience. Yet, they present
an interest by themselves, as they use a necessary assumption for measures to be related by
a convex body. The importance of the weak Aleksandrov relation compared to its strong
counterpart comes from the necessity of this assumption for the discrete problem and many
examples of discrete measures related by a convex body which satisfies only the weak version
of Aleksandrov relation. The discussion of different versions of Aleksandrov relations are in
Section 3.

2. Preliminaries

Let Kn be the set of convex bodies in Rn, that is compact convex sets with nonempty
interior. By Kn

o ⊂ Kn, we denote those convex bodies which contain origin in their interior.
By ∂K, we denote the boundary of K. Given K ∈ Kn

o , the radial map rK : Sn−1 → ∂K is
defined by

(2.1) rK(u) = ru ∈ ∂K,

for some positive r. By N(K, x), we denote the normal cone of K at x ∈ ∂K, that is the
set of all outer unit normals at x:

(2.2) N(K, x) = {v ∈ Sn−1 : (y − x) · v ≤ 0 for all y ∈ K}.

Given K ∈ Kn
o , we define the radial Gauss image of ω ⊂ Sn−1 as:

(2.3) αααK(ω) =
!

x∈rK(ω)

N(K, x) ⊂ Sn−1.

The radial Gauss image αααK maps sets of Sn−1 into sets of Sn−1. Outside of a spherical
Lebesgue measure zero set, multivalued map αααK is singular valued. It is known that αααK

maps Borel measurable sets into Lebesgue measurable sets. See [43] for both of these results.
We denote the restriction of αααK to be the singular value map by αK . For details, see [14].

Suppose λ is a submeasure on Sn−1 defined on spherical Lebesgue measurable sets and
K ∈ Kn

o . Then λ(K, ·), the Gauss image measure of λ via K, is a submeasure defined as the
pushforward of λ via the map αααK . That is, for each Borel ω ⊂ Sn−1,

(2.4) λ(αααK(ω)) = λ(K,ω).

If λ is absolutely continuous, λ(K, ·) is a Borel measure [14].
The radial function ρK : Sn−1 → R is defined by:

(2.5) ρK(u) = max{a : au ∈ K}.

In this case, rK(u) = ρK(u)u. The support function is defined by

(2.6) hK(x) = max{x · y : y ∈ K}.

For K ∈ Kn
o we define its polar body K∗ by hK∗ := 1

ρK
. We denote by rk the radius of the

largest ball contained in K centered at o and by Rk the radius of the smallest ball containing
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K centered at o as well. Clearly, rk ≤ Rk. The support hyperplane to K with outer unit
normal v ∈ Sn−1 is defined by

(2.7) HK(v) = {x : x · v = hK(v)}.

We define H−(α, v) = {x : x · v ≤ α}.
For ω ⊂ Sn−1, we define coneω ⊂ Rn, the cone that ω generates, as

(2.8) coneω = {tu : t ≥ 0 and u ∈ ω}.

And define ω̂, the restricted cone that ω generates, as

(2.9) ω̂ = {tu : 0 ≤ t ≤ 1 and u ∈ ω}.

We are going to say that ω ⊂ Sn−1 is spherically convex if the cone that ω generates is a
nonempty convex subset of Rn, that is not all of Rn. Therefore, a spherically convex set
on Sn−1 is nonempty and is always contained in a closed hemisphere of Sn−1. For a subset
ω ⊂ Sn−1 which is contained in a closed hemisphere, we define the spherical convex hull, 〈〈〈ω〉〉〉,
of ω, by

(2.10) 〈〈〈ω〉〉〉 = Sn−1 ∩ conv (coneω).

where conv stands for the convex hull in Rn. Given ω ⊂ Sn−1 contained in a closed hemi-
sphere, polar set ω∗ is defined by:

ω∗ =
"

u∈ω
{v ∈ Sn−1 : u · v ≤ 0}.(2.11)

We note that polar set is always convex. If ω ⊂ Sn−1 is a closed set, we define its outer
parallel set ωα, as

(2.12) ωα =
!

u∈ω
{v ∈ Sn−1 : u · v > cosα}.

For recent work on spherical convex bodies, see Besau and Werner [10].
Given K ∈ Kn

o and measures µ and λ, we define the functional Φ(K,µ,λ) by

(2.13) Φ(K,µ,λ) :=

&
log ρKdµ+

&
log ρK∗dλ.

Note that Φ(K,µ,λ) = Φµ,λ(K
∗) in [14] notation.

We call measures λ and µ on Sn−1 discrete if they have the form:

λ =
k#

j=1

λjδuj

µ =
m#

i=1

µiδvi ,

(2.14)

where δ is the Dirac measure and λj, µi > 0. Discrete measure λ is called equal-weight if
λj = 1 for all j. Similarly, for µ. Note that we only deal with finitely many weights, as this
is our main interest. The notation is consistent: j, uj,λj, k are always associated with λ and
i, vi, µi,m are always associated with µ. Given a discrete measure µ not concentrated on
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closed hemisphere, we define Pµ ⊂ Kn
o as the set of polytopes containing the origin of the

form

(2.15) P = (
m"

i=1

H−(αi, vi))
∗,

where αi > 0. That is, Pµ is the set of all convex polytopes containing the origin with
vertices rP (vi).

The Gauss image measure was defined in Introduction. We just note that if for a given µ
and λ, there exists K ∈ Kn

o such that µ = λ(K, ·), we say that measures µ and λ are related
by convex body K. By λ̄, we denote the Lebesgue measure on Sn−1.

We use the books of Schneider [43] as our standard reference. The books of Gruber and
Gardner are also good alternatives [18, 19].

3. Weak Aleksandrov Condition

Let µ and λ be discrete equal-weight measures. Suppose there exists a solution P ∈ Kn
o

such that µ = λ(P, ·). Clearly, this implies m = µ(Sn−1) = λ(Sn−1) = k. Note that if
u ∈ {u1, . . . , um} is contained in normal cone of a vertex at direction v ∈ {v1, . . . , vm}, then
uv > 0 since P ∈ Kn

o . So, before we attempt to find the solution for the given measures, we
should guarantee the existence of a pairing between two sets of vectors such that uv > 0 in
each pair (see Proposition 3.4). This leads us two to questions: (1) Does there exist a good
necessary assumption that guarantees the existence of a pairings between vectors {u1 . . . um}
and {v1 . . . vm} such that uv > 0 for each pair? and (2) For a specified pairing, does there
exist a solution? The answer to the first part turns out to be the weak Aleksandrov condition.

The Aleksandrov condition (Defenition 1.2) and the weak Aleksandrov condition (Def-
inition 1.5) were stated in the Introduction. Note that we use the phrases “Aleksandrov
condition” and “Aleksandrov relation” interchangeably. Since for any ω ⊂ Sn−1 a compact
spherically convex set, Sn−1 \ ω∗ = ωπ

2
and ω∗∗ = ω, we immediately obtain the following

equivalent definitions:

Proposition 3.1. Two Borel measures µ and λ on Sn−1 are Aleksandrov related if and only
if µ(Sn−1) = λ(Sn−1), and for each compact spherically convex set ω ⊂ Sn−1

(3.1) , µ(ω) < λ(ωπ
2
).

Remark. Sometimes we will write Strong Aleksandrov related in place of Aleksandrov related
to emphasize the difference. △

Proposition 3.2. Two discrete Borel measures µ and λ on Sn−1 are weak Aleksandrov
related if and only if µ(Sn−1) = λ(Sn−1), and for each compact spherically convex set ω ⊂
Sn−1

(3.2) , µ(ω) ≤ λ(ωπ
2
).

Or, alternatively, for each compact spherically convex set ω ⊂ Sn−1,

(3.3) λ(ω) ≤ µ(ωπ
2
).

The difference between the two conditions is demonstrated in the following example:
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Example 3.3. Take any equilateral triangle P in R2 centered at the origin with vertices on
the unit sphere. Let v1, v2, v3 be such that rP (vi) = vi are different vertices of the triangle.
Let µ = λ be the discrete equal-weights measure:

(3.4) λ = µ =
3#

i=1

δvi .

Then, clearly, µ = λ(P, ·). Note that µ and λ are weak Aleksandrov related but not strong
Aleksandrov related. It is also interesting to note that for these particular measures, any
triangle P ∈ Pµ is a solution. We leave the details to the reader.

The next proposition provides a necessary condition for two measures to be related by
a convex body. In particular, it shows that the weak Aleksandrov relation is a necessary
condition for two discrete measures to be related by a convex body.

Proposition 3.4. Given two Borel measures µ and λ on Sn−1, suppose they are related by
a convex body K ∈ Kn

o . That is, µ = λ(K, ·). Then µ(Sn−1) = λ(Sn−1), and there exists a
uniform α > 0 such that for each compact, spherically convex set ω ⊂ Sn−1,

(3.5) µ(ω) ≤ λ(ωπ
2
−α).

Moreover, if µ and λ are discrete, then they are weak Aleksandrov related.

Proof. Since K ∈ Kn
o , there exists a c > 0 such that rK

RK
> c. Consider some u ∈ Sn−1 and

v ∈ αααK(u). Then

(3.6) rK ≤ hK(v) = ρK(u)uv ≤ RKuv.

Hence, c < rK
RK

≤ uv. So, for each u ∈ Sn−1, we have

(3.7) αααK(u) ⊂ uarccos(c) ⊂ uπ
2
−α,

for some α where 0 < α < π
2
. Therefore, for any compact spherically convex ω, since

ωπ
2
−α = ∪u∈ωuπ

2
−α, we obtain

(3.8) µ(ω) = λ(K,ω) = λ(αααK(ω)) ≤ λ(ωπ
2
−α).

The second part of the claim immediately follows from Proposition 3.2. □
We also state this lemma as a trivial consequence of the above proof for later reference.

Lemma 3.5. Given K ∈ Kn
o , suppose 0 < c < rK

Rk
. Then for any v ∈ Sn−1,

(3.9) αααK(v) ⊂ varccos c.

Note that for discrete measures, the weak Aleksandrov relation actually implies the above
conclusion since every compact spherically convex set is closed:

Proposition 3.6. Suppose the discrete measures µ and λ satisfy the weak Aleksandrov re-
lation. Then there exists a uniform α > 0 such that for each closed set ω ⊂ Sn−1:

(3.10) µ(ω) ≤ λ(ωπ
2
−α).

Proof. First we claim that for each closed set ω ⊂ Sn−1 contained in a closed hemisphere,
ωπ

2
= 〈〈〈ω〉〉〉π

2
. By set inclusion, ωπ

2
⊂ 〈〈〈ω〉〉〉π

2
. For the opposite direction, take any v ∈ 〈〈〈ω〉〉〉π

2
.

Then for some x ∈ 〈〈〈ω〉〉〉, we have that xv > 0. By the definition of convex hull, we can write
x as some convex combination of finite number of vectors yj ∈ cone(ω). By the definition of
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the cone, each yj is a positive scaling of some vector zj ∈ ω. Hence, x is a linear combination
of some vectors zj with positive coefficients. Therefore, since xv > 0, we have that for some
zj, zjv > 0, and thus v ∈ ωπ

2
. So, ωπ

2
⊃ 〈〈〈ω〉〉〉π

2
. And hence, ωπ

2
= 〈〈〈ω〉〉〉π

2
.

Let A be a collection of all possible indices I ∈ {1 . . .m} such that {vi}i∈I are contained
in closed hemisphere. Given I ∈ A, define ωI as ∪i∈Ivi. Then by Proposition 3.2 and from
the previous conclusion, we obtain:

(3.11) µ(ωI) ≤ µ(〈〈〈ωI〉〉〉) ≤ λ(〈〈〈ωI〉〉〉π
2
) = λ(ωI

π
2
).

Since λ is a discrete measure and (vi)π
2
is an open set, for any vi, where i ∈ {1 . . .m}, there

exists an αi such that λ((vi)π
2
−αi

) = λ((vi)π
2
). Let α = mini αi. Therefore, by the definition

of outer parallel set:

(3.12) λ(ωI
π
2
\ ωI

π
2
−α) = λ(

!

i∈I

(vi)π
2
\
!

i∈I

(vi)π
2
−α) ≤ λ(

!

i∈I

((vi)π
2
\ (vi)π

2
−αi

)) = 0,

where the middle inequality follows from the set inclusion. Combining the last two equations,
we obtain that for any I ∈ A,

(3.13) µ(ωI) ≤ λ(ωI
π
2
−α).

Suppose now we are given an index set I ∈ {1 . . .m} such that {vi}i∈I are not contained
in a closed hemisphere. Then µ(ωI) ≤ µ(Sn−1) = λ(Sn−1) = λ(ωI

π
2
). And similarly to (3.12),

we obtain that λ(ωI
π
2
) = λ(ωI

π
2
−α). Therefore, combining with the previous claim, we obtain

that:

(3.14) µ(ωI) ≤ λ(ωI
π
2
−α)

for any index set I ∈ {1 . . .m}.
Now given any closed set ω ⊂ Sn−1, let ωI = ω ∩ {v1 . . . vm}. Then from the previous

inequality,

(3.15) µ(ω) = µ(ωI) ≤ λ(ωI
π
2
−α) ≤ λ(ωπ

2
−α),

where the last inequality follows by the set inclusion. □

4. The Assignment Functional

In this section, we introduce the assignment functional, which is related to the existence
of a solution to the Discrete Gauss Image problem. We will first show that it suffices to
reduce the problem to polytopes.

Proposition 4.1. Given discrete measure µ not concentrated on a closed hemisphere and
discrete measure λ, suppose there exists a body K ∈ Kn

o satisfying µ = λ(K, ·). Let P ∈ Pµ

be a polytope with vertices rK(vi),

(4.1) P = (
m"

i=1

H−(1/rK(vi), vi))
∗.

Then µ = λ(P, ·), and for each j, uj ∈ ˚αααK(vf(j)), for some function f : {1 . . . k} → {1 . . .m}.
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Proof. The existence of a polytope P is justified by simply taking the convex hull of points
rk(vi). Since µ is not concentrated on a closed hemisphere, we obtain that P contains the
origin in its interior. Hence, P ∈ Kn

o and P ∈ Pµ.
First we claim that for any i1 ∕= i2, the set αααK(vi1),∩αααK(vi2) does not contain any vectors

{u1 . . . uk}. We proceed by contradiction and suppose the claim is not true. Let some
uj ∈ αααK(vi1) ∩αααK(vi2). First note that vi1 ∕= −vi2 , as for any v ∈ Sn−1:

(4.2) αααK(v) ⊂ vπ
2
,

from Lemma 3.5. And thus αααK(v) ∩ αααK(−v) = 0. Note that the set of boundary points of
K for which uj is normal,

(4.3) HK(uj) ∩K

is a convex set. Hence,

(4.4) cone (HK(uj) ∩K) = {tx : t ≥ 0 and x ∈ HK(uj) ∩K}
is a convex set. So r−1

K (HK(uj) ∩K) is a spherical convex set, as cone (HK(uj) ∩K) ∕= Rn.
Since vi1 , vi2 ∈ r−1

K (HK(uj)∩K), we obtain 〈〈〈{vi1 , vi2}〉〉〉 ⊂ r−1
K (HK(uj)∩K). Therefore, for any

v ∈ 〈〈〈{vi1 , vi2}〉〉〉, we have uj ∈ αααK(v). Thus λ(K, v) ≥ 1 for uncountably many v ∈ 〈〈〈{vi1 , vi2}〉〉〉,
and therefore, λ(K, ·) can’t be a finite measure. We arrive at a contradiction.

Therefore, given j, we can properly define a function f by uj ∈ αααK(vf(j)). Since for any i,
αααK(vi) ⊂ αααP (vi), we obtain that uj ∈ αααP (vf(j)). We now check that the interior assumption

is satisfied. That is, uj ∈ ˚αααP (vf(j)), which will finish the proof. Suppose it is not. Pick some
uj ∈ ∂αααP (vf(j)). Since P is a polytope with vertex rP (vf(j)), there exist some other vi for
i ∕= f(j), such that uj ∈ ∂αααP (vi). Now, for the support function hP , we obtain

(4.5) hP (uj) = ujrP (vi) = ujrP (vf(j)).

Since we showed that uj ∕∈ αααK(vi1) ∩ αααK(vi2) for any i1 ∕= i2, we have that uj /∈ αααK(vi).
Therefore,

(4.6) ujrP (vi) = ujrK(vi) < hK(ui),

where we additionally used that rK(vi) = rP (vi). However, since uj ∈ αααK(vf(j)), we have

(4.7) ujrP (vf(i)) = ujrK(vf(i)) = hK(ui).

We get the contradiction from the combination of the last three equations.
□

Parts of next definition were defined in the Introduction section.

Definition 4.2. Given discrete measure λ and discrete measure µ, we associate the set of
assignment functions :

(4.8) Fµ,λ :=
$
f : {1 . . . k} → {1 . . .m} |

#

j∈f−1(i)

λj = µi

'
.

We call f ∈ Fµ,λ an assignment function with respect to µ and λ. If for f ∈ Fµ,λ there exists

a body K ∈ Kn
o solving the Gauss Image problem for measures µ and λ and uj ∈ ˚αααK(vf(j)),

then we call f a solution function. We also say that f , or fK , is an assignment function with
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respect to the body K. Sometimes we will write F instead of Fµ,λ. Finally, we define the set
of the proper assignment functions as a subset of the above:

(4.9) Fµ,λ,p := {f ∈ F | ∀j, ujvf(j) > 0}.
Sometimes we write Fp instead of Fµ,λ,p.

Remark. Note that if f ∈ Fp \ F, then f can not be a solution function. △

We claim that if measures satisfy the weak Aleksandrov relation, then Fp ∕= ∅. There are
several ways to see this. First, would be the consequence of the proof of the main Theorem
5.1. Alternatively, one can prove the statement by induction. Here, we present a proof for
equal-weight µ and λ, which provides an interesting connection to the graph theory and gives
another justification for the weak Aleksandrov relation.

Suppose we are given two discrete equal-weight measures µ and λ. Consider a bipartite
graph G(µ,λ) formed by two sets of vertices {uj} and {vi} where we draw an edge from vi to
uj if and only if viuj > 0. For V ⊂ {v1 . . . vm} define NG(V ) as the set of adjacent verticies
to V . Hall’s marriage theorem states that there exist a perfect matching between verticies
of G(µ,λ) if and only if for each subset of vertices V ⊂ {v1 . . . vm}:
(4.10) |V | ≤ |NG(V )|.
Notice that this is exactly the same as weak Aleksandrov condition:

Lemma 4.3. Suppose we are given two discrete equal-weight measures µ and λ, where
λ(Sn−1) = µ(Sn−1). Then Hall’s marriage condition is equivalent to the weak Aleksan-
drov condition. In particular, if two measures satisfy weak Aleksandrov condition, then Fp is
nonempty.

Proof. Suppose for each subset of vertices V ⊂ {v1 . . . vm},
(4.11) |V | ≤ |NG(V )|.
Then for any ω a compact spherically convex set,

µ(ω) =|ω ∩ {v1 . . . vm}| ≤ |NG(ω ∩ {v1 . . . vm})| ≤
|ωπ

2
∩ {u1 . . . um}| = λ(ωπ

2
).

(4.12)

Thus, by Proposition 3.2, µ and λ are weak Aleksandrov related. For another direction,
suppose the weak Aleksandrov condition holds. Consider any V ⊂ {v1 . . . vm}. Then V is a
closed set, and by Proposition 3.6, µ(V ) ≤ λ(Vπ

2
−α) for some constant α. Since λ(Vπ

2
−α) ≤

|NG(V )|, we obtain that |V | ≤ |NG(V )|.
We just proved equivalence of the two conditions. Given the weak Aleksandrov assump-

tion, Hall’s marriage Theorem tells us that the graph formed from its vertices has a matching.
That is, there exists a σ permutation such that vjuσ(j) > 0 for all j. Thus, Fp ∕= ∅. □
Remark. In some sense, all possible Aleksandrov relations, even for the non-discrete problem,
are related to Hall’s Marriage Theorem. It is interesting to note that the theorems related
to the Discrete Gauss Image problem provided in the next sections actually prove Hall’s
marriage theorem for specific bipartite graphs G(µ,λ). If we show existence of a convex
body K ∈ Kn

o such that µ = λ(K, ·), then the assignment function with respect to this body
gives a perfect matching. In some sense, the results of the next section present a functional
approach to Hall’s marriage theorem. △
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Definition 4.4. For each f ∈ F, we define the assignment functional

(4.13) A(f) :=
k#

j=1

log ujvf(j),

where the log of negative values is defined to be −∞.

Note that f ∈ Fp if and only if A(f) > −∞. The −∞ in the definition does not create
a problem since ujvf(j) ≤ 1 for any vectors. That is, we never sum −∞ with +∞. In the
next section, we will show that as long as the assignment functional is uniquely maximized
on the set Fµ,λ, and Fp ∕= ∅, there exists a polytope P ∈ Pµ satisfying µ = λ(P, ·). On the
other hand, if the maximizer is non-unique, then we show that the solution does not exist.

Remark. We would like to comment on the remark made in the beginning about restricting
to equal-weight measures λ. The motivation comes from the following. Suppose for given
discrete measures µ and λ, we have Fµ,λ ∕= ∅. Let f ∈ Fµ,λ. Then we can define new discrete
measures λ′ and µ′ to be

λ′ :=
k#

j=1

δuj

µ′ =
m#

i=1

µ′
iδvi :=

m#

i=1

|f−1(i)|δvi ,
(4.14)

where |f−1(i)| denotes the number of elements mapping to i. It is easy to see that f ∈ Fµ′,λ′ .

If there exists a K ∈ Kn
o solving µ′ = λ′(K, ·) such that uj ∈ ˚αααK(vf(j)), then K automatically

solves the original problem µ = λ(K, ·) and vice versa. Therefore, f is a solution function for
discrete µ,λ problem if and only if f is a solution function for discrete µ′,λ′ problem where
λ′ is equal-weight. Hence the equal-weights λ problems capture all varieties of a “geometric
part” of the Discrete Gauss Image problem, as any problem is reducible to the Discrete
Gauss Image problem with equal-weights λ.

△

5. Existence and Uniqueness

In this section, we will prove Theorem 5.1, which presents an equivalence between the
Discrete Gauss Image problem and The Assignment Problem. We note that for convenience,
we will assume that µ is not concentrated on a closed hemisphere. It seems that nothing
prevents similar results to hold without this restriction. Roughly, this happens because if
µ is not concentrated on a closed hemisphere, then by considering some body K, one can
start to decrease this body in radial directions ρK(u) where uvi ≤ 0 increasing each αααK(vi).
However, we do not proceed in this direction, since by assuming that µ is not concentrated on
a closed hemisphere, we can speak of a class of polytopes Pµ that has a natural resemblance
with the discrete version of classical Minkowski problem.

Theorem 5.1. Let λ be a discrete equal-weight measure and µ be a discrete measure. Suppose
they are weak Aleksandrov related and µ is not concentrated on a closed hemisphere. Then Fp

is nonempty. Moreover, f ∈ F is a solution function if and only if it is the unique maximizer
of the assignment functional. In other words,
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• The assignment functional, A(f), is maximized at exactly one f ∈ F. For this f ,

there exists a polytope P ∈ Pµ such that λ(P, ·) = µ and uj ∈ ˚αααP (vf(j)).
• Or A(f) is maximized at more than one f ∈ F, in which case there is no convex body
K ∈ Kn

o such that λ(K, ·) = µ.

Recall the functional Φ(K,µ,λ) defined in (2.13). We start with some preliminary propo-
sitions.

Proposition 5.2. Let λ and µ be discrete measures. Suppose they are weak Aleksandrov
related. Suppose also that µ is not concentrated on a closed hemisphere. Then, for any
assignment function f ∈ F and any K ∈ Kn

o , we have:

(5.1) Φ(K,µ,λ) ≤ −A(f).

Proof. Given any K ∈ Kn
o , let P ∈ Pµ be a convex polytope with vertices rP (vi) = rK(vi).

Then P ⊂ K, and hence hP ≤ hk, which implies that
(
log ρK∗dλ ≤

(
log ρP ∗dλ. At the same

time,
(
log ρKdµ =

(
log ρPdµ since we preserved the radial distance at the point masses of

µ. Hence, Φ(K,µ,λ) ≤ Φ(P, µ,λ). Recall that we can write P as P ∗ =
)m

i=1 H
−(1/αi, vi),

where αi = ρK(vi).
Note that 1

αiviuj
is the distance from the center to the intersection between a ray in the uj

direction starting at the center and the hyperplane H(1/αi, vi). From this, we obtain that

(5.2) log ρP ∗(uj) =
m

min
i=1

log(
1

αiviuj

),

where we assume that log( 1
x
) = ∞ if x < 0. This relates to the fact that a ray in the

uj direction from the center never intersects the hyperplane H(1/αi, vi). Note that by
Proposition 3.2,

(5.3) 1 = µ(〈〈〈uj〉〉〉) ≤ λ(〈〈〈uj〉〉〉π
2
).

So, there always exists some vi such that ujvi > 0, and the right hand-side of equation (5.2)
is not ∞. Using (2.13), we write:

(5.4) Φ(P, µ,λ) =
m#

i=1

µi logαi +
k#

j=1

λj

m

min
i=1

log(
1

αiviuj

).

So in particular, again assuming log( 1
x
) = ∞ if x < 0, given any assignment function f we

have:

(5.5) Φ(P, µ,λ) ≤
m#

i=1

µi logαi +
k#

j=1

λj log(
1

αf(j)vf(j)uj

).

By definition of the assignment function,

(5.6)
#

j∈f−1(i)

λj = µi.

Therefore, looking back at (5.5), we obtain that αi on the right side cancels out, which makes
it equal to −A(f). Combining the last inequality with Φ(K,µ,λ) ≤ Φ(P, µ,λ), we prove the
claim. □
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We easily obtain the following uniqueness result as a corollary of the above argument:

Proposition 5.3 (Uniqueness). If g ∈ Fµ,λ is a solution function where λ is an equal-weight
measure, and µ is not concentrated on a closed hemisphere, then g is the maximizer of the
assignment functional.

Proof. Since g ∈ F is a solution function, let P ∈ Pµ be a polytope solution to the Gauss

Image problem such that µ = λ(P, ·) and uj ∈ ˚αααK(vg(j)), which is guaranteed by Proposition
4.1. Since we additionally have:

(5.7)
#

j∈f−1(i)

λj = µi

and since λj = 1 by the equal-weight assumption, Equation (5.4) in the above Proposition
5.2 gives us that Φ(P, µ,λ) = −A(g). Combining this with the result of the same proposition,
we obtain that −A(g) ≤ −A(f) for any f ∈ F.

□

Define dλε :=
*k

j=1 φε,jdλ̄, where λ̄ is the Lebesgue measure on the sphere and φε,i is a

bump function taking only two values (0 and ε−1) with disk support centered at uj of volume
ε.

Lemma 5.4. Let µ and λ be discrete and weak Aleksandrov related measures. Then there
exists ε′ > 0 and α > 0 such that for all ε < ε′, we have that for each closed set ω ⊂ Sn−1:

(5.8) µ(ω) ≤ λε(ωπ
2
−α).

We call α a uniform weak Aleksandrov constant for λε.

Proof. Since µ and λ are weak Aleksandrov related discrete measures, Proposition 3.6 tells
us that there exists an α′ > 0 such that for any closed set ω ⊂ Sn−1,

(5.9) µ(ω) ≤ λ(ωπ
2
−α′).

Choose ε′ small enough so that sptφε′,j ⊂ (uj)α′
2
for any j. If uj ∈ ωπ

2
−α′ , then uj ∈ (v)π

2
−α′

for some v ∈ ω. Thus, (uj)α′
2
⊂ (v)π

2
−α′

2
. Combining everything, we conclude that for any

ε ≤ ε′, if uj ∈ ωπ
2
−α′ , then

(5.10) sptφε,j ⊂ (uj)α′
2
⊂ (v)π

2
−α′

2
⊂ ωπ

2
−α′

2
.

Therefore, since all of the original mass of measure λ still remains in ωπ
2
−α′

2
for λε (with

possible additional mass from the other uj), we conclude that for any ε ≤ ε′,

(5.11) λ(ωπ
2
−α′) ≤ λε(ωπ

2
−α′

2
).

Combining this with (5.9) and letting α := α′

2
, we complete the proof. □

Lemma 5.5. Given a discrete measure µ not concentrated on a closed hemisphere and a
discrete equal-weight λ, suppose they satisfy the weak Aleksandrov relation. Then, there
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exists an ε′ > 0 such that for all 0 < ε < ε′, there exists Kε ∈ Pµ solving µ = λε(Kε, ·) of
the following form:

(5.12) Kε := (
m"

i=1

H−(1/βε,i, vi))
∗,

where βε,i = ρKε(vi). For each ε < ε′, RKε = 1, there exists a uniform constant Cµ,λ such
that:

(5.13) rKε > Cµ,λ > 0.

Remark. This constant depends on vectors vi and the uniform weak Aleksandrov constant
α from Lemma 5.4. △

Proof. Let ε′ and α be constants given by Lemma 5.4. If the measure µ is not concentrated
on a closed hemisphere, then Kε and Cµ,λ exist by Lemma 9.3 in the Appendix. The
independence of constant Cµ,λ is guaranteed by uniformity of α for all ε′ < ε. □

For the rest of this section, we will work with constants ε′, α, Cµ,λ and polytopes Kε from
previous Lemmas. Define spti,j,ε ⊂ Sn−1 as the region of intersection between the support
of φε,j and αααKε(vi). We note two identities below. The first comes from the definition of λε,
and the second comes from µ = λε(Kε, ·).

λ̄(
m#

i=1

spti,j,ε) = ε

λ̄(
k#

j=1

spti,j,ε) = εµi.

(5.14)

Before we proceed with the proof, we provide the general picture. Solving the Discrete
Gauss Image problem corresponds to putting point-masses at uj into corresponding normal
cones vi. By smoothing out these point masses, we get a sequence of bodies Kε such that
each original point mass has split into possibly several normal cones. The idea is that
by making ε → 0, the supports of λε become smaller. This should force the supports to
be fully contained in a normal cone eventually. If this happens for some body K, then
µ = λε(K, ·) = λ(K, ·). We will see that this does not always happen.

We will compute Φ(Kε, µ,λε). Note that spti,j,ε ⊂ αααKε(vi) ⊂ (vi)arccosCµ,λ
, by defini-

tion and Lemma 3.5. Therefore, in particular, all logarithms are defined in the following
expression:

Φ(Kε, µ,λε) =

&
log ρKεdµ+

&
log ρK∗

ε
dλε

=
m#

i=1

µi log βε,i +

i=m,j=k#

i,j=1

&

spti,j,ε

log
1

βε,iviv

1

ε
dλ̄(v).

(5.15)

Inside of the right integral, we can pull βi out. Then summing over j and using above
identities (5.14), we get that the first sum cancels out. We have
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(5.16) Φ(Kε, µ,λε) = −
i=m,j=k#

i,j=1

&

spti,j,ε

log (viv)
1

ε
dλ̄(v).

Lemma 5.6. Under the conclusion of Lemma 5.5, there exists a subsequence of Kε converg-
ing as ε → 0 to some convex body K ∈ Pµ of the form

(5.17) K = (
m"

i=1

H−(1/αi, vi))
∗,

where βε,i → αi > 0 along this subsequence. For this body, RK = 1 and rK ≥ Cµ,λ.

Proof. Since for each ε < ε′, we have that RKε = 1 and rKε > Cµ,λ, the standard compactness
arguments apply.

□
Lemma 5.7. For subsequence Kε → K in Lemma 5.6,

(5.18) Φ(Kε, µ,λε) → Φ(K,µ,λ).

Proof. We will assume the convergence for all sequences Kε → K to simplify notation. This
implies that ρKε → ρK and ρK∗

ε
→ ρK∗ . Therefore,

(
log ρKεdµ →

(
log ρKdµ. Now for the

second summand of Φ, consider the following:

(5.19)

&
log ρK∗

ε
dλε −

&
log ρK∗dλ =

&
log ρK∗

ε
− log ρK∗dλε +

&
log ρK∗(dλε − dλ).

First, we note that ρK∗
ε
≥ 1 and ρK∗ ≥ 1. Since for any a, b we have that log a − log b ≤

1
min(a,b)

|a−b|, we obtain log ρK∗
ε
−log ρK∗ ≤ |ρK∗

ε
−ρK∗ |. Since ρK∗

ε
→ ρK∗ converges uniformly

and
(
dλε = k, we obtain that:

(5.20)

&
log ρK∗

ε
− log ρK∗dλε → 0.

It is not hard to see that our bump function φε,i works nicely for limits of continuous
functions. That is, λε converges to λ weakly as functionals on the space of continuous
functions. This implies that the second summand of (5.19) approaches zero. Combining all
of the above implies that Φ(Kε, µ,λε) → Φ(K,µ,λ).

□
Lemma 5.8. For subsequence Kε → K in Lemma 5.6, there exist a subsequence such that
for all i, j

(5.21) ,

&

spti,j,ε

1

ε
dλ̄ → ci,j.

Coefficients ci,j form a matrix [ci,j] with k columns and m rows such that each coefficient in
the matrix is nonnegative, the sum over any column is equal to 1, and the sum over the i-th
row is equal to µi.

Remark. This corresponds to how much of weight falls into normal cone of vertex. In the
special case µi = 1, for the equal-weights problem, [ci,j] is a doubly stochastic matrix. △
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Proof. We start with the subsequence from Lemma 5.6. Since

(5.22) 0 ≤
&

spti,j,ε

1

ε
dλ̄ ≤ 1,

the standard compactness arguments insure convergence of volumes of supports for some
further subsequence. The coefficients of the matrix are clearly nonnegative. Properties of
the matrix follow from identities (5.14). □

From all the above, we obtain the following form for the functional Φ(K,µ,λ).

Lemma 5.9. For K obtained in Lemma 5.8, we have:

(5.23) Φ(K,µ,λ) = −
i=m,j=k#

i,j=1

ci,j log(viuj) > 0.

Note that if viuj ≤ 0 then ci,j = 0, we force the term ci,j log(viuj) to be zero in the above
sum.

Proof. Recall that from Lemma 5.6, we have a bound rKε > Cµ,λ and RKε = 1. Therefore,
spti,j,ε ⊂ αααKε(vi) ⊂ (vi)arccosCµ,λ

, by Lemma 3.5. In particular, this means that log(viv) is
continuous and bounded from below on spti,j,ε = sptφε,j ∩αααKε(vi), with bound independent
of ε. This with Lemma 5.8 and the construction of the bump function implies that

(5.24)

&

spti,j,ε

log (viv)
1

ε
dλ̄(v) → ci,j log(viuj).

Combining this with Lemma 5.7 and Equation (5.16), we obtain the stated result. □
The matrix [ci,j] is known as the solution matrix to transportation problems of transferring

desirable material from m sources to k locations. All such matrices (k columns and m rows
such that each coefficient in matrix is nonnegative, sum over any column is equal to 1, and
sum over the i-th row is equal to µi) are known as transportation polytopes. For reference,
see Section 8.1 in [15]. It is a convex polytope with known extreme points. The special case
of this polytope, when k = m and µi = 1, is known as the Birkhoff-von Neumann theorem.

Lemma 5.10. There is a natural one-to-one correspondence between vertices of transporta-
tion polytopes containing matrix [ci,j] and assignment functionals from F.
Proof. Corollary 8.1.4 in [15] provides a recursive construction for vertices of the transporta-
tion polytope. It is not hard to see from this construction that each vertex is an assignment
functional, and every assignment functional is a vertex. □

Convexity of the transportation polytope implies the following:

Proposition 5.11. There exist 0 ≤ θf ≤ 1 for f ∈ F, such that
*

f∈F θf = 1 and

(5.25) Φ(K,µ,λ) = −
#

f∈F

θfA(f).

Since Φ(K,µ,λ) < ∞, we obtain that there exists f ∈ F such that ujvf(j) > 0. In the above
sum, if A(f) = −∞, then θf = 0.

Proof. From Lemma 5.9, −Φ(K,µ,λ) is the element-wise product of matrices [ci,j] and
[log(viuj)]. By convexity of the transportation polytope and Lemma 5.10, we obtain the
above result. □
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Now the Theorem 5.1 follows:

Theorem 5.1. First part. Unique maximizer. Proof. We have already seen that as-
signment functional can only be solution if it is maximizer, by Proposition 5.3. Suppose the
assignment functional, A(g), is maximized at exactly one g ∈ F. Combining Proposition
5.11 and Proposition 5.2 we obtain that for the constructed body K in Lemma 5.8,

(5.26) Φ(K,µ,λ) = −
#

f∈F

θfA(f) ≥ −A(g) ≥ Φ(K,µ,λ).

Therefore, θg = 1, and thus [ci,j] is a vertex of the transport polytope. In particular, this
means that from Lemma 5.8,

&

spti,j,ε

1

ε
dλ̄ → 0 if g(j) ∕= i

&

spti,j,ε

1

ε
dλ̄ → 1 if g(j) = i.

(5.27)

Consider some Kε. We claim that if
(
spti,j,ε

1
ε
dλ̄ > 1

2
, then λj ∈ ˚αααKε(vi). This is because

spti,j,ε is an intersection of the convex normal cone at a point vi with a spherical disk of

volume ε. If the intersection of such sets contains at least 1
2
of the volume of disk, the center

of the disk lies in the interior of the normal cone. So (5.27) implies that for small enough

ε, λj ∈ ˚αααKε(vi), when g(j) = i. Therefore, µ = λ(Kε, ·). In particular, g is the solution
function. □

Remark. While we proved that for small enough ε over some subsequence Kε is a solution,
we can not guarantee that K is a solution. The problem is that vectors uj may lie on the
boundary of αααK(vi) in general (even if Φ(K,µ,λ) = −A(g)). △

Proposition 5.12. For any discrete λ and discrete µ not contained in a closed hemisphere,
polytope solutions to the Discrete Gauss Image problem from the set Pµ:

(5.28) (
m"

i=1

H−(1/αi, vi))
∗

form an open set in terms of (α1, . . .αm) ∈ Rm.

Proof. Polytope K ∈ Kn
o is a solution if and only if uj ∈ ˚αααK(vfK(j)). The latter allows for

small perturbations of (α1, . . .αm). □

Theorem 5.1. Second part. Nonunique maximizer. Proof. Given µ and λ, suppose
there exists a solution K such that µ = λ(K, ·). Let P be a polytope solution guaranteed
by Proposition 4.1. Note that the assignment function f with respect to the body P is a

maximizer of A(·) by Proposition 5.3. Since uj ∈ ˚αααP (vf(j)), for any small perturbation of
uj, P will still be a solution to the Gauss Image problem for small perturbations of λ, by
Proposition 5.12. So, in particular, f will still be maximizer for small perturbations of uj,
again by Proposition 5.3. We will arrive at a contradiction by showing that if we have more
than one maximizer, then we can always perturb uj small enough so that f is no longer a
maximizer of A(·).
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If f, g are two maximizers of A(·), without loss of generality, suppose f(1) ∕= g(1). We
have that

(5.29) A(f) =
k#

j=1

log ujvf(j) =
k#

j=1

log ujvg(j) = A(g).

Since f(1) ∕= g(1), we can perturb u1 sufficiently small to decrease log(
u1vf(1)
u1vg(1)

), since u1vf(1) >

0 and u1vg(1) > 0. Thus, the above equality changes to inequality since all other terms are
held constant. Therefore, for this perturbation, f is no longer a maximizer of A(·). □

6. Alterntative Approach

Since we are working with polytopes, one might wonder whether there exists a more alge-
braic approach that does not rely on the smoothing of measures. Indeed, such an approach
exists. The advantage of this direction is a simple algebraic combinatorial system that does
not rely on the smoothing argument. We will not pursue this approach in its full generality,
as it does not yield a better result. Yet, we believe this technique is important to be stated.

Rockafellar first characterized the set of subdifferentials of convex functions. He proved
that a set is cyclically monotone if and only if it is a subgradient of a convex funtion (see [39]).
Later, a generalization of the cyclic monotonicity was introduced by Rochet and Rüschendorf
(see [38,41]), in the context of mathematical economics and mass transport. More recently,
Arstein-Avidan, Sadovsky, and Wyczesany, in [4], generalized cyclic monotoic sets even
further to what is called c-path-boundedess. The approach we will present is based on
similar ideas.

Here, we consider the most simple case of the Discrete Gauss Image problem: same number
of equal mass atoms for λ and µ. Let

(6.1) λ =
m#

j=1

δuj
and µ =

m#

j=1

δvj .

Lemma 6.1. Suppose measures µ and λ are discrete, equal-weight, and weak Aleksandrov
related. Suppose µ is not concentrated on a closed hemisphere. Then we can reorder indices
so that the identity permutation maximizes A(·). In this case, ujvj > 0 for all j.

Proof. This immediately follows from Lemma 4.3. □
For the rest of this section, we will fix the indexing so that the identity permutation

maximizes A(·). This is guaranteed by Lemma 6.1. The next Lemma provides the algebraic
system that is equivalent to the existence of the solution to the Gauss Image problem.

Lemma 6.2. Suppose measures µ and λ are discrete, equal-weight, and weak Aleksandrov
related. Suppose µ is not concentrated on a closed hemisphere. Consider any polytope P ∈ Pµ

(6.2) P = (
m"

i=1

H−(1/αi, vi))
∗,

where αi > 0. Consider the following system of equations

(6.3) aj,i < xj − xi for i ∕= j ∈ {1 . . .m},
where aj,i = log

ujvi
ujvj

if
ujvi
ujvj

> 0, and ai,j = −∞ otherwise. We define ai,i = 0 for convenience.

Then µ = λ(P, ·) if and only if xi = log(αi) solves this system of equations (6.3).
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Proof. Fix P , and consider its dual P ∗. Since 1
αiviuj

is the distance from the center to the

intersection between a ray in the uj direction and the hyperplane H(1/αi, vi), we obtain
that:

(6.4) log ρP ∗(uj) =
m

min
i=1

log(
1

αiviuj

).

In the last equation, we assume that log( 1
x
) = +∞ if x < 0. On the other hand, uj ∈ ˚αP (vj)

if and only if the ray in the uj direction intersects H(1/αj, vj) strictly before it intersects any
other H(1/αi, vi) for j ∕= i. Therefore, µ = λ(P, ·) if and only if for all j ∕= i, the following
strict inequality holds:

(6.5) log(
1

αjvjuj

) < log(
1

αiviuj

),

again assuming that the right side is +∞ if αiviuj < 0. Recalling that αj,αi, vjuj > 0 and
assuming that the log of a non-positive value is −∞, the above is equivalent to:

(6.6) log
ujvi
ujvj

< logαj − logαi.

Defining xk to be logαk, we arrive at the conclusion. □
The conclusion to the following lemma is the analogue to the cyclic monotonicity condition.

It gives us natural condition on the coefficients in the above lemma.

Lemma 6.3. Suppose measures µ and λ are discrete, equal-weight, and weak Aleksandrov
related. Suppose µ is not concentrated on a closed hemisphere. Suppose the identity permu-
tation maximizes the assignment functional A(·). Then the maximizer is unique if and only
if for any non-trivial permutation σ on {1 . . .m},

(6.7) aσ :=
m#

i=1

ai,σ(i) < 0,

where coefficients ai,j are given by Lemma 6.2.

Proof. Let Id denote the identity permutation. Given any nontrivial permutation σ,

A(σ) < A(Id) ⇔
m#

j=1

log(ujvσ(j)) <
m#

j=1

log(ujvj) ⇔

aσ =
m#

j=1

aj,σ(j) =
m#

j=1

log(
ujvσ(j)
ujvj

) < 0,

(6.8)

again assuming that log x = −∞ if x < 0 or the expression inside is undefined.
□

We will show that the system established in Lemma 6.2 has a solution if the coefficients
ai,j satisfy the condition of Lemma 6.3. This provides an alternative proof for the Discrete
Equal-Weight Gauss Image problem. The system with the non-strict inequality already arose
in the work of K. Wyczesany [47]. The proof is based on induction and Helly’s theorem. We
refer the reader to [47] for details of the proof.
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Lemma 6.4 (K. Wyczesany, Lemma 4.2.8 in [47]). Let αi,j ≥ −∞ for i ∕= j ∈ {1 . . .m},
and let ai,j = 0 for i = j. Then the following system of equations

(6.9) aj,i ≤ xj − xi for i ∕= j ∈ {1 . . .m}
has a real solution if and only if for any permutation σ,

(6.10)
m#

i=1

ai,σ(i) ≤ 0.

It is not hard to see that the above lemma provides us with a similar lemma for the strict
system:

Lemma 6.5. Let αi,j ≥ −∞ for i ∕= j ∈ {1 . . .m} and let ai,j = 0 for i = j. Then the
following system of equations:

(6.11) aj,i < xj − xi for i ∕= j ∈ {1 . . .m}
has a real solution if and only if for any non trivial permutation σ,

(6.12) aσ :=
m#

i=1

ai,σ(i) < 0.

Remark. One can prove this directly, with a similar approach to the proof Lemma 6.4. △

Proof. Assume the system of equations has a solution. Then for any non-identical permuta-
tion σ,

aσ =
m#

i=1

ai,σ(i) =
m#

σ(i) ∕=i

ai,σ(i) +
m#

σ(i)=i

ai,i =

m#

σ(i) ∕=i

ai,σ(i) <
m#

σ(i) ∕=i

(xi − xσ(i)) = 0,

(6.13)

where the last equality follows by simply opening the sum and canceling terms.
For the other direction, assume the conditions on coefficients αi,j. Then for any σ not

equal to the identity permutation,

(6.14)
m#

i=1

ai,σ(i) < 0.

Because there are finitely many permutations, we can choose uniform ε such that for each σ
not equal to the identity permutation,

(6.15)
m#

i=1

ai,σ(i) + ε < 0.

Choose new coefficients āi,j = ai,j +
ε
m

if i ∕= j, and āi,j = ai,j = 0 otherwise. These
coefficients satisfy the condition of Lemma 6.4. Hence, there is a solution to the following
system of equations:

(6.16) āj,i ≤ xj − xi for i ∕= j ∈ {1 . . .m},
since αi,j < ᾱi,j for i ∕= j. The same solution solves the original system. □
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Now we give alternative proof of the discrete equal-weight problem.

Theorem 6.6. Suppose µ and λ are discrete equal-weight measures that satisfy the weak
Aleksandrov inequality. Suppose µ is not concentrated on a closed hemisphere. Then A(·) is
maximized by exactly one σ ∈ F if and only if there exists a polytope P with vertices rP (vi)
solving µ = λ(P, ·).

Proof. By Lemma 6.1, one can order the coefficients so that the identity permutation max-
imizes the functional A(·). Then by Lemma 6.2, there exists a P solving µ = λ(P, ·) if and
only if there is a solution to the system of equations (6.3). By Lemma 6.5, the system of
equations (6.3) has a solution if and only if condition (6.12) is satisfied for αi,j. The condi-
tion (6.12) is equivalent to the unique maximization of the assignment functional, by Lemma
6.3. □

7. The Assignment Problem from Geometric Point of View

As was shown by Theorem 5.1 the question of the existence of the solution to the Discrete
Gauss Image problem is equivalent to the uniqueness of the maximizer for the assignment
functional. Let us now analyze this question. In this section, we will provide a geometric
condition that insures that the maximizer is unique, and, hence, there exists a solution to
the Discrete Gauss Image Problem. This condition is equivalent to the statement that if
σ1 ∕= σ2 ∈ Fµ,λ then A(σ1) = A(σ2), which forces A(·) to be uniquely maximized. This can
be seen to be not far away from necessary, yet for the true necessary condition, one has
to restrict the class of permutations Fµ,λ to consider. In the next section, we are going to
analyze the uniqueness of maximizer from the generic point of few.

It turns out that the question about the uniqueness of maximizers of the assignment
functional for the dimension n = 2 is very easy to understand. Consider the following
example. Let P be any regular convex polytope with the center in its interior. Choose
set {v1 . . . vm} of distinct unit vectors such that rP (vi) are all vertices of P . Since n = 2
we can also ensure that vector subscript notation is clock-wise ordered. Now let the set
{u1 . . . um} be normals to the facets of P such that uj⊥[rP (vj), rP (vj+1)] for j < m and
um⊥[rP (vm), rP (v1)]. Let

(7.1) λ =
m#

j=1

δuj
and µ =

m#

j=1

δvj .

These two measures are weak Aleksandrov related and µ is not concentrated on a closed
hemisphere, hence satisfying conditions of Theorem 5.1. We will now prove that A(·) is
maximized at exactly two permutations from Fµ,λ: the identity permutation σId and a cycle
σs = (1 . . .m). First, a similar argument to Proposition 3.4 shows that µ and λ are weak
Aleksandrov related. Clearly, µ is not concentrated on a closed hemisphere. By a simple
computation of Φ(P, µ,λ) analogues to derivation of Proposition 5.2 and equations (5.4) and
(5.5) one can show that for any permutation σ ∕= σs and σ ∕= σId:

(7.2) − A(σid) = −A(σs) = Φ(P, µ,λ) < −A(σ)

Combining all these Theorem 5.1 gives us that there doesn’t exist a solution K ∈ Kn
o such

that µ = λ(K, ·). It is interesting to note that the solution Kε for λε,µ-problem from Lemma
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5.6 converge to P , so in particular, the method established in Existence and Uniqueness
section of this work identifies the body P from which measures were constructed.

This example is the essence of the Assignment Problem. In dimension two if one starts
with discrete equal-weight µ and λ satisfying weak Aleksandrov condition such that µ is not
concentrated on a closed hemisphere we either obtain that there exist polytope P ∈ Pµ such
that µ = λ(P, ·) or there was a polytope P ∈ Pµ such that {u1 . . . um} where normals to its
facets. The answer depends on the uniqueness of the maximizer. Moreover, the failure of
uniqueness precisely determines P ∈ Pµ (up to scaling) and the assignment of uj to specific
side of P in the sense of uj⊥[rP (vi), rP (vi+1)].

Now, let’s analyze the higher dimensional picture while additionally dropping the equal-
weight assumption for µ. First, we define a geometric condition which is related to the
uniqueness of the maximizer. This condition comes from “lifting” the mentioned two-
dimensional example into higher dimensions.

Definition 7.1. Given set of distinct vectors {u1 . . . ul} and distinct vectors {v1 . . . vl} with
l ≥ 2 suppose there exist a piecewise linear closed curve γ with vertices {x1 . . . xl} such that

• xi = λivi for some λi > 0
• ui⊥[xi, xi+1] for 1 ≤ i ≤ l − 1
• ul⊥[xl, x1]

The curve γ is called an edge-normal loop of two sets.

Remark. This curve doesn’t always exist. If it exists it is unique up to dilation.
△

Clearly, any piecewise linear closed curve not passing through the center provides two sets
{u1 . . . ul} and {v1 . . . vl} to which it is an edge-normal loop. Going back to the example
discussed at the beginning of this section, any two dimensional polytope defines an edge-
normal loop. The next two propositions establish the relation between the edge-normal loops
and the values of the assignment functional for different permutations.

Proposition 7.2. Suppose a piecewise linear closed curve γ with verticies {x1 . . . xl} is an
edge normal loop of {u1 . . . ul} and {v1 . . . vl}. Then

(7.3) A(σid) = A(σs)

where σs is cycle permutation (1 . . . l).

Proof. Let ul+1 = u1, vl+1 = v1, xl+1 = x1 and λl+1 = λ1 then by defenition:

A(σid) = A(σs) ⇔
l#

j=1

log(ujvj) =
l#

j=1

log(ujvj+1)
(7.4)

If 0 ∈ γ then 0 ∈ [xi, xi+1] = [λivi,λi+1vi+1] and hence uivi = 0 and uivi+1 = 0 which forces
A(σid) = A(σs) = −∞ by convention and establishes the above equality. Suppose 0 /∈ γ,
then for all j, ujvj > 0 and ujvj+1 > 0. Hence the above equality is equivalent to:

(7.5)
l+

j=1

ujvj
ujvj+1

= 1
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Now ui⊥[xi, xi+1] is exactly ui(xi−xi+1) = 0 which is equivalent to λi+1

λi
= uivi

uivi+1
. Therefore,

the above is equivalent to:

(7.6)
l+

j=1

λi+1

λi

= 1

which holds since λl+1 = λ1.
□

We now show the reverse statement.

Proposition 7.3. Suppose for sets {u1 . . . ul} and {v1 . . . vl}
(7.7) A(σid) = A(σs) > −∞
Then there exist an edge-normal loop of {u1 . . . ul} and {v1 . . . vl}.

Proof. Similar to previous proposition, since A(σid) = A(σs) > −∞ we obtain

(7.8)
l+

j=1

ujvj
ujvj+1

= 1

Let λ1 = 1. Then recursively define λi for i ≤ l using the relation λi+1

λi
= uivi

uivi+1
. By recursive

defenition we obtain that for all i < l, ui⊥[xi, xi+1]. Then using (7.8) we obtain:

(7.9)
λl

λ1

=
l−1+

j=1

λi+1

λi

=
l−1+

j=1

ujvj
ujvj+1

=
ulv1
ulvl

Therefore we also obtain ul⊥[xl, x1]. □
Definition 7.4. Discrete equal-weight measures µ and λ are called edge-normal loop free
if for any σ, σ′ ∈ Sm and given any l such that 2 ≤ l ≤ m, there dose not exist and edge
normal loop for {uσ(1) . . . uσ(l)} and {vσ′(1) . . . vσ′(l)}

Before addressing non-equal weight measure µ let us first illustrate the relation between
edge-normal loop free condition and the uniqueness of the assignment functional.

Theorem 7.5. Suppose µ and λ are discrete equal-weight measures which are weak Alek-
sandrov related and such that µ is not concentrated on a closed hemisphere. Suppose µ and
λ are edge-normal loop free. Then there exist a unique σ ∈ Fµ,λ which maximizes A(·).

Proof. Since µ and λ are weak Aleksandrov related by Lemma 4.3 the set Fp,µ,λ is nonempty.
Hence, there exist a σ ∈ Fp,µ,λ such that A(σ) > −∞. By reordering indices we can assume
that the maximizers is identity permutation. Now chose any other permutation σ ∈ Fp,µ,λ.
Let τ1 . . . τk = σ be its decomposition into non-trivial non-intersecting cycles.

Let τ1 = (j1 . . . jv). Consider ordered subsets {uj1 , . . . ujv} and {vj1 . . . vjv}. Since µ and
λ are edge-normal loop free from, we obtain from Proposition 7.3 that A(τ ′1) ∕= A(σ1

id)
where σ1

id is identity permutation on the set {j1 . . . jv} and τ ′1 is a restriction of τ1 to set
{j1 . . . jv}. If A(τ ′1) > A(σ1

Id) then A(τ1) > A(σId). Thus, the identity permutation is not a
maximizer. Contradiction. Hence, A(τ ′1) < A(σ1

Id). Similarly, we obtain for all 1 ≤ i ≤ k
that A(τ ′i) < A(σi

Id). Therefore, A(σ) < A(σId). Since σ was an arbitrary permutation we
are done. □
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Combining this with Theorem 5.1 we obtain:

Corollary 7.6. Suppose µ and λ are discrete equal-weight measures which are weak Alek-
sandrov related and such that µ is not concentrated on a closed hemisphere. Suppose µ and
λ are edge-normal loop free. Then, there exists a polytope P ∈ Pµ such that λ(P, ·) = µ.

We now show the reverse statement which gives another insight into the geometry behind
edge-normal loop condition.

Proposition 7.7. Pick any µ. Given polytope P ∈ Pµ, consider a closed path γ of its
adjacent vertices using the edges of P . Suppose {x1 . . . xk} are its vertices in order. Let
xk+1 = xk. Pick ui such that [xi, xi+1] ∈ HP (ui). Then γ is an edge normal loop for sets
{v1 . . . vk} and {u1 . . . uk}.
Proof. Immediate. □

In particular, this shows that in some sense all “relevant” edge-normal loops come from 1-
skeleton of convex polytopes. If the edge-normal loop is not realizable as a part of 1-skeleton
of a convex polytope with the center in its interior it doesn’t affect the solution of the Gauss
Image Problem. This also shows that in general normals to edges are quite rigid if there
exists an edge-normal loop of them. To formulate this more precisely, consider the following
question: Suppose we start with some discrete equal-weight measure µ and polytope P ∈ Pµ.
Suppose λ is a discrete-equal weight measure. Now let us assume that P almost solves the
Gauss Image Problem with σId assignment, but it happened that some of the vectors ui are
actually on the boundary of the normals cones uj ∈ αααP (vj). Can we change the polytope a

bit, moving its vertices along the rays vj to obtain uj ∈ ˚αααP (vj), so that everything falls inside
of normal cones? If we have only one vector on the boundary, then there is no problem, we
can move the corresponding vertex a bit outside to increase the normal cone. What about
the general case? Well, we can do this if and only if there are no edge-normal loops.

We now turn to the statement for non-equal weight measure µ. We will need some basic
combinatoric machinery established before we proceed. Unfortunately, we were not able to
find a good reference for these results. Given permutation σ we can uniquely decompose it
into disjoint cycles τj = (xj

1 . . . x
j
sj
) where by sj we denote the length of the cycle. We prove

a similar statement for assignment functionals:

Proposition 7.8. Let λ be a discrete equal-weight measure and µ be a discrete measure.
Suppose f, g ∈ Fµ,λ. Then, there exist a permutation σ ∈ Sk such that f ◦ σ = g. Moreover,

there exist a product of disjoint cycles τ1, . . . , τl ∈ Sk, such that for each τj = (xj
1 . . . x

j
sj
)

function f is injective with restrict to the set {xj
1, . . . , x

j
sj
} and f ◦ τ1 . . . τl = g.

Proof. Since |f−1(i)| = |g−1(i)| given any i ∈ 1 . . .m choose a bijective function hi from set
g−1(i) into set f−1(i). Since all functions hi are bijections with non-intersecting supports
and images we can define σ ∈ Sn−1 to be permutations satisfying σ(j) = hg(j)(j). Then,
f ◦ σ(j) = fhg(j)(j) = f(f−1(g(j))) = g(j), which ensures the first claim.

Now pick any σ, satisfying f ◦ σ = g. Decompose σ into a product of disjoint cycles
φ1 . . .φv. Suppose, without loss of generality, cycle φ1 = (x1 . . . xs(j)) does not satisfy the
claim. We will show that we can, then, always split it into two more cycles ω1 and ω2 of
strictly smaller size such that f ◦ ω1ω2φ2 . . .φv = g and all cycles are disjoint. Then, since,
in general, we can only do finitely many splitting, eventually we will have that f is injective
with respect to any cycle in the decomposition.
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We are only left to prove that if f is not injective with respect to elements permuted by
φ1, then we can split φ1 into ω1 and ω2, so that f ◦ φ1 = f ◦ ω1ω2. Given φ1 = (x1 . . . xs(1))
let i, j be the indices such that f(xi) = f(xj). Without loss of generality, assume i = 1.
Then we can define ω1 = (x1 . . . xj−1) and ω2 = (xj . . . xs(1)). Now, φ1 is equal to ω1ω2

everywhere besides xj−1 and xs(1). Yet, f ◦ φ1(xj) = f(xj) = f(x1) = f ◦ ω1(xj−1) and
f ◦ φ1(xs(1)) = f(x1) = f(xj) = f ◦ ω2(xs(1)). Therefore, f ◦ φ1 = f ◦ ω1ω2. □

Now with the combinatorial result in hand, we similarly obtain the previous results for a
bigger class of measures.

Definition 7.9. Discrete equal-weight measures λ and discrete measure µ are called edge-
normal loop free if given any l such that 2 ≤ l ≤ m and given any σ ∈ Sk and σ′ ∈ Sm and
given any l such that 2 ≤ l ≤ m, there dose not exist and edge normal loop for {uσ(1) . . . uσ(l)}
and {vσ′(1) . . . vσ′(l)}.

Theorem 7.10. Let λ be a discrete equal-weight measure and µ be a discrete measure.
Suppose they are weak Aleksandrov related, edge-normal loop free and µ is not concentrated
on a closed hemisphere. Then there exist a unique f ∈ Fµ,λ which maximizes A(·).

Proof. Since µ and λ are weak Aleksandrov related by Theorem 5.1 the set Fp,µ,λ is nonempty.
Hence, there exist a f ∈ Fp,µ,λ such that A(f) > −∞.. Suppose f, g ∈ Fp,µ,λ are maximizers
of A(·). By Proposition 7.8 there exist disjoint cycles τ1, . . . , τl ∈ Sk, such that for each
τj = (xj

1 . . . x
j
sj
) function f is injective with restrict to the set {xj

1, . . . , x
j
sj
} and f◦τ1 . . . τl = g.

Note that since f is injective on any cycle, sj ≤ m for any j.

Let fi and gi for 1 ≤ i ≤ l be the restrictions of f and g to the subset {xj
1, . . . , x

j
sj
}. Then,

A(f) =
l#

i=1

A(fi)

A(g) =
l#

i=1

A(gi) =
l#

i=1

A(fi ◦ τi)

Notice that A(fi ◦ τi) = A(gi). If, it happened that for some i, A(fi ◦ τi) > A(fi), then
A(f ◦ τi) > A(f), and hence f is not the maximizer. Therefore, A(fi ◦ τi) ≤ A(fi). Since
µ and λ are edge-normal loop free, sets {uxj

1
. . . uxj

sj
} are {vxj

1
. . . vxj

sj
} are edge-normal loop

free, and, hence, A(fi◦τi) ∕= A(fi) for all i. Therefore, A(fi◦τi) < A(fi). Thus, A(g) < A(f).
Contradiction. □

Combining this with Theorem 5.1 we obtain:

Corollary 7.11. Let λ be a discrete equal-weight measure and µ be a discrete measure.
Suppose they are weak Aleksandrov related, edge-normal loop free and µ is not concentrated
on a closed hemisphere. Then, there exists a polytope P ∈ Pµ such that λ(P, ·) = µ.

Proof. The proof is an immediate combination of Theorem 5.1 and Theorem 7.10 □

8. The Assignment Problem from Generic Point of View

We will now investigate The Assignment Problem from generic point of view. First, we
will show that the maximizer is unique in the generic sense. Suppose we are given a discrete,
equal-weight measure λ and a discrete measure µ, such that µ(Sn−1) = λ(Sn−1). We define
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A to be the class of all possible pairs of measures µ′,λ′ with variations of directions of the
point masses of µ and λ. More formally, we can start with some m ∈ N and coefficients
µi ∈ N and consider all possible pairs of measures (µ and λ). We will additionally impose
that µ is a discrete measure with fixed coefficients and λ is a discrete, equal-weight measure
with fixed k =

*m
i µi. We can parameterize this class as product of m + k spheres, with a

sphere for each vector. That is, each (µ′,λ′) ∈ A has representation (v′1, . . . , v
′
m, u

′
1, . . . , u

′
k).

The set A naturally inherits the topology from spheres. In A, we also require that uj be
distinct and vi be distinct. In terms of parameterization, this constitutes an open subset of
the product of spheres.

Definition 8.1. Space A constructed above is called the µ problem space. Sometimes, we
write Aµ to emphasize the original measure from its construction. Note that it only depends
on the dimension n, constant k ∈ N, and coefficients µi ∈ N for 1 ≤ i ≤ k.

Proposition 8.2. Pairs of measures (µ,λ) ∈ A satisfying the weak Aleksandrov inequality
form an open set in the inherited topology from the product of spheres.

Proof. Take some (v1, . . . , vm, u1, . . . , uk) ∼ (µ,λ) ∈ A satisfying the weak Aleksandrov
relation. Then by Proposition 3.6, there exists a uniform α > 0 such that for each closed set
ω ⊂ Sn−1:

(8.1) µ(ω) ≤ λ(ωπ
2
−α).

Let (v′1, . . . , v
′
m, u

′
1, . . . , u

′
k) ∼ (µ′,λ′) ∈ A be any pair of measures satisfying uju

′
j > cos(α

4
)

and viv
′
i > cos(α

4
). Note that all such possible measures form an open ball around (µ,λ) in

the product topology. Then for any compact, convex set ω ⊂ Sn−1, if v′i ∈ ω, then vi ∈ ωα
4
.

Hence,

µ′(ω) = µ′(ω ∩ {v′1, . . . , v′m}) ≤µ(ωα
4
∩ {v1, . . . , vm}).(8.2)

We can apply Proposition 3.6 to ωα
4
∩ {v1, . . . , vm} to obtain:

(8.3) µ′(ω) ≤ µ(ωα
4
∩ {v1, . . . , vm}) ≤ λ((ωα

4
∩ {v1, . . . , vm})π

2
−α).

Clearly, (ωα
4
∩ {v1, . . . , vm})π

2
−α ⊂ ωπ

2
− 3

4
α. Thus,

(8.4) µ′(ω) ≤ λ(ωπ
2
− 3

4
α).

Now if uj ∈ ωπ
2
− 3

4
α, then u′

j ∈ ωπ
2
− 2

4
α. We obtain:

(8.5) µ′(ω) ≤ λ′(ωπ
2
− 2

4
α).

Therefore, µ′,λ′ are weak Aleksandrov related. □
Proposition 8.3. Pairs of measures (µ,λ) ∈ A such that µ is not concentrated on a closed
hemisphere form an open set.

Proof. Consider a sequence of (µn,λn) → (µ,λ), where µn are concentrated on a closed
hemisphere. For each n, there exists a un ∈ Sn−1 such that for all i, unv

n
i ≤ 0. By

compactness, there exists a subsequence such that un → u. Since vni → vi, then along the
subsequence unv

n
i → uvi. Hence, for all i, uvi ≤ 0. Thus, µn is concentrated on a closed
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hemisphere. Therefore, the set (µ,λ) where µ is concentrated on a closed hemisphere is
closed, and its complement is an open set. □

Theorem 8.4. Given A, the pairs of measures (µ,λ) ∈ A for which there exists a polytope
solution to the Discrete Gauss Image problem form a dense open set in an open set of
measures (µ,λ) satisfying the weak Aleksandrov relation, where µ is not concentrated on a
closed hemisphere.

Proof. Let Ac be subset of A consisting of pairs of measures that are weak Aleksandrov
related and where µ is not concentrated on a closed hemisphere. Openess of Ac follows from
Propositions 8.3 and 8.2. Define A′(f) := eA(f), where A′(f) = 0 if A(f) = −∞. We note
that the set F of assignment functions remains the same for any pair of measures from A.
For each f ∈ F, we also define the set Af := {(µ,λ) | ∀j ujvf(j) > 0}.

First, we note that A′(f) is a continuous function on A as a function from pairs of measures
into R. Moreover, A′(f) = A′(g) if and only if A(f) = A(g), and A′(f) > A′(g) if and only
if A(f) > A(g). Therefore, A(·) is uniquely maximized for a fixed pair of measures if and
only if A′(·) is uniquely maximized for the same pair. Recall that by Theorem 5.1, to prove
the statement of the theorem, it suffices to show that the assignment functional is uniquely
maximized on a dense open subset of Ac.

Suppose for some pair (µ,λ) ∈ Ac, the functional is uniquely maximized. Thus, there
exists f ∈ F, such that A(f) > A(g) for every other g ∈ F. Moreover, A(f) > −∞ by
Theorem 5.1, since (µ,λ) ∈ Ac. Therefore, A′(f) > A′(g) for every other g ∈ F, and
A′(f) > 0. Then, since there are finitely many g ∈ F, by continuity of A′(f) and A′(g) with
respect to pairs of measures, there exists a neighborhood of (µ,λ) such that A′(f) is still a
maximizer and A′(f) > 0. Thus, A(f) is a unique maximizer for a neighborhood of (µ,λ).
This shows that the set where the assignment functional is uniquely maximized is open in
A. Since Ac is open, this set is also open in Ac.

Consider some Af ∩Ag = ∅. We would like to show that A(f) ∕= A(g) on a dense open
subset of Af ∩Ag. First of all, A(f) and A(g) are continuous functions on Af ∩Ag, and thus
A(f) ∕= A(g) on an open subset of Af ∩ Ag. Suppose now for some pair (µ,λ) ∈ Af ∩ Ag,
we have A(f) = A(g). Then:

A(f) =
k#

j=1

log ujvf(j) =
k#

j=1

log ujvg(j) = A(g) ⇔

k#

j=1

log(
ujvf(j)
ujvg(j)

) = 0.

(8.6)

Since f ∕= g, we can find a j such that f(j) ∕= g(j). Since the vi are distinct, we have that
vf(j) ∕= vg(j). Thus, there exists a small variation of uj such that all other terms are held

constant while log(
ujvf(j)
ujvg(j)

) changes, which makes A(f) ∕= A(g). This shows that A(f) ∕= A(g)

is a dense subset of Af ∩Ag, making it a dense open subset of Af ∩Ag.
Now consider some (µ,λ) ∈ Ac such that the functional is not uniquely maximized. Sup-

pose {fi}i∈I are all proper assignment functions. That is, A(fi) > −∞. Let AI :=
)

Afi ,
which is non-empty open set containing (µ,λ). From the previous argument, for each pair
i1, i2 ∈ I, A(fi1) ∕= A(fi2) on a dense open subset of Afi1

∩Afi2
. Hence, A(fi1) ∕= A(fi2) on

a dense open subset of AI . Since a finite intersection of dense open sets is dense and open,
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there exists a dense open set B1 ⊂ AI such that all A(fi) are distinct. Hence, all A′(fi) are
distinct on B1.

Since (µ,λ) ∈ Ac, by Theorem 5.1, there exists an f ∈ F such that A′(f) > 0. By
continuity, there exists a neighborhood B2 of (µ,λ) such that A′(f) > A′(g) for each g /∈
{fi}i∈I , since A′(g) = 0 at (µ,λ). Combining both sets B1 and B1, we see that for each
(µ,λ) ∈ B := B1 ∩ B2, the functional is uniquely maximized. Moreover, B is a dense open
set of some neighborhood of (µ,λ). Therefore, there exists a pair of measures with a unique
maximizer sufficiently close to (µ,λ). This shows that the set where assignment functional
is uniquely maximized is dense in Ac.

□

Remark. Instead of the above generic formulation, we can write generic property with the
respect to the Zariski topology. Since for each f, g ∈ F, the condition

(8.7) A(f)− A(g) = 0

are zeros of an algebraic function, it suffices to show that the set

(8.8) {(µ,λ) | ∀f, g A(f) ∕= A(g)}

is nonempty. We will still need to separately require the non-concentration condition on µ
and the weak Aleksandrov condition. △

Finally, we will give some examples of pairs of measures for which there does not exist a
unique maximizer.

Example 8.5. Let n = 3 and choose some constant l > 3. Pick any small regular spherical
polygon with 2l vertices contained in a closed hemisphere. (That is, a polygon on sphere
with edges being great-circle arcs, and same angles between planes defined by the consecutive
great-circle arcs.) Iteratively label vertices by u1, v1, u2, v2 . . . vl. This regular spherical
polygon naturally defines a two-dimensional polygon in R3 with the same vertices. Let n be
a unit normal. Choose vl+1 = ul+1 = −n. Let µ, λ be equal-weight discrete measures from
these vectors. First of all, the measure µ is not concentrated on a closed hemisphere. It is
also not hard to convince oneself that, by choosing the polygon to be small enough, one can
ensure that there are exactly two maximizers of the assignment functional f and g, where f
is defined by:

(8.9) f(j) = j

and g is:

(8.10) g(j) =

,
-

.

j − 1 if 1 < j ≤ l
l if j = 1
l + 1 if j = l + 1.

It is also not hard to see that sets {u1 . . . ul} and {v1 . . . vm} have an edge normal loop which
is given by piciewise linear path connecting points xi = vi.

Consider a small variation of vector u2. As long as A(f)
A(g)

= 1, the functional is not uniquely

maximized. Holding all other vectors fixed, we can vary u2 as a unit vector or as a point on

a sphere so that u2v2
u2v1

is constant. This variation preserves A(f)
A(g)

. Now suppose c := u2v2
u2v1

, then

for small perturbations:
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u2v2
u2v1

= c ⇔

u2(v2 − v1c) = 0.
(8.11)

So, in particular we can move u2 along some geodesic so that A(f)
A(g)

= 1. After some variation

in u2, we can pick v2 and vary it similarly along geodesic preserving

u2v2
u3v2

= c2 ⇔

v2(u2 − u3c2) = 0.
(8.12)

Note that we can only ensure these variations locally, as we would like to preserve the
weak Aleksandrov relation, concentration condition, and since we want all other assignment
functionals to remain less than A(f) = A(g). All of these conditions are guaranteed by the
openness and continuity of the respective sets and functions.

This illustration shows the geodesic variation of points on sphere so that solution to every
variation doesn’t exist. This variation preserves the edge-normal loop condition as well.

9. Appendix

These are results from our second paper on this subject, titled “The Gauss Image Problem
with Weak Aleksanrov Condition,” which are used in the proof of Theorem 5.1. We group
them in this Appendix for the convenience.

Definition 9.1. Given two Borel measures µ and λ on Sn−1, a measure µ is weak Aleksan-
drov related to λ if µ(Sn−1) = λ(Sn−1) and for each closed set ω ⊂ Sn−1 contained in closed
hemisphere, there exists an α ∈ (0, 1) such that

(9.1) µ(ω) ≤ λ(ωπ
2
−α).

This definition for general measures agrees with the discrete weak Aleksandrov definition
given earlier for discrete measures, by Proposition 3.6. Equipped with this definition, we show
the following theorem, in “The Gauss Image Problem with Weak Aleksandrov Condition:”

Theorem 9.2. [Theorem 1.4] Suppose µ is a discrete Borel measure not concentrated on
a closed hemisphere, and λ is an absolutely continuous Borel measure. Suppose µ is weak
Aleksandrov related to λ. Then, there exists a K ∈ Kn

o such that µ = λ(K, ·).

Lemma 9.3. [Lemma 4.6] Suppose µ and λ are given as in Theorem 9.2. Let α be a uniform
constant for the weak Aleksandrov assumption. Then, there exists a polytope solution P to
the Gauss Image problem of the form:

(9.2) P = (
m"

i=1

H−(αi, vi))
∗,

such that rP
Rp

is bounded from below by a constant Cµ,λ, depending only on vectors vi and

the uniform weak Aleksandrov constant α. Besides being dependent on α, this constant is
independent of λ.
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