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Abstract. We introduce a relaxation to the Aleksandrov relation assumption for the Gauss
Image Problem. This new assumption turns out to be a necessary condition for two measures
to be related by a convex body. We provide several properties of the new condition. A
solution to the Gauss Image Problem is obtained for the case when one of the measures is
assumed to be discrete and another measure is assumed to be absolutely continuous, under
the new relaxed assumption.
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1. Introduction

The Gauss Image Problem, introduced in [13], is a natural extension to the classical
Aleksandrov question of finding a body with the prescribed Aleksandrov’s integral curvature
[1–3]. This problem is a part of the study of Minkowski problems, a vital area of research in
convex geometry. The study of these problems has led to the formulation of the log-Brunn-
Minkowski inequality conjecture [5,12,17,21,36] and to the sharp affine Lp Sobolev inequality
[28]. The latter has also inspired many other sharp affine isoperimetric inequalities [16,25,28].
Readers are referred to Chapters 8 and 9 of Schneider’s textbook [37] for an introduction to
Minkowski problems and to the articles [7,10,11,18–20,22,24–27,29,32–34,38,40–44] for an
overview of the recent developments. Additionally, we acknowledge the works [4,6,31,35,39]
related to the regularity of Minkowski problems.

Given two measures µ and λ on Sn−1, the Gauss Image Problem asks about the existence
of a convex body K, containing the origin in its interior, such that µ = λ(K, ·), where by
λ(K, ·) we denote the pullback of λ under the radial Gauss Image map ofK: a composition of
the multivalued Gauss map ofK and the radial map ofK. In fact, many significant measures
can be described as pullbacks of a certain λ under the Gauss Image map. For instance, when
λ is the spherical Lebesgue measure, λ(K, ·) is known as Aleksandrov’s integral curvature
of the body K [3]. When λ is Federer’s (n − 1)th curvature measure, λ(K, ·) is the surface
area measure of Aleksandrov-Fenchel-Jessen [2]. Finally, the more recently defined the dual
curvature measure is also a pullback of a certain λ under the Gauss Image map [19]. All
of these examples motivate the necessity for a systematic study of how measures transfer to
each other through the radial Gauss Image Map, that is, the Gauss Image Problem:

The Gauss Image Problem (Defined in [13]) Suppose λ is a measure defined on the
Lebesgue measurable subsets of Sn−1, and µ is a Borel measure on Sn−1. What are the
necessary and sufficient conditions on λ and µ, so that there exists a convex body K with the
origin in its interior such that

(1.1) µ = λ(K, ·)?

If such a convex body exists, to what extent is it unique?

When λ is a spherical Lebesgue measure, we recover the original Aleksandrov problem,
which Aleksandrov first studied in [1–3]. Different proofs of the Aleksandrov problem were
given by Oliker [34] and Bertrand [8]. The Lp analogs of the Aleksandrov problem were
considered by Huang, Lutwak, Yang, and Zhang in [18], by Mui in [30], and by Zhao in [42].

When one of the measures is assumed to be absolutely continuous, the Gauss Image
Problem was studied in [13] by Böröczky, Lutwak, Yang, Zhang, and Zhao. There, the
Aleksandrov relation was introduced to attack the problem:

Definition 1.1. Two Borel measures µ and λ on Sn−1 are called Aleksandrov related if

(1.2) λ(Sn−1) = µ(Sn−1) > µ(ω) + λ(ω∗)

for each compact, spherically convex set ω ⊂ Sn−1, where the set ω∗ is defined as a polar
set:

(1.3) ω∗ :=
!

u∈ω
{v ∈ Sn−1 : uv ≤ 0}



THE GAUSS IMAGE PROBLEM WITH WEAK ALEKSANDROV CONDITION 3

Equivalently, one can define two Borel measures µ and λ on Sn−1 to be Aleksandrov related
if µ(Sn−1) = λ(Sn−1) and for each compact, spherically convex set ω ⊂ Sn−1,

(1.4) µ(ω) < λ(ωπ
2
),

where

(1.5) ωπ
2
:=

"

u∈ω
{v ∈ Sn−1 : u · v > 0}.

With this new condition, the following solution to the Gauss Image Problem was obtained
[13]:

Theorem 1.2 (K. J. Böröczky, E. Lutwak, D. Yang, G. Y. Zhang and Y. M. Zhao [13]).
Suppose µ and λ are Borel measures on Sn−1, and λ is absolutely continuous. If µ and λ
are Aleksandrov related, then there exists a body K ∈ Kn

o , such that µ = λ(K, ·).

Moreover, if one of the measures is assumed to be absolutely continuous and strictly
positive on open sets, it was shown that the Aleksandrov relation is a necessary assumption
for the existence of a solution to the Gauss Image Problem. In this case, a solution to the
Gauss Image Problem was shown to be unique up to a dilation. We refer the reader to [13]
for this result and an introduction to the Gauss Image Problem. Additionally, let us also
mention Theorem 1.7 and Remark 4.9 in Bertrand [8], which also imply Theorem 1.2 using
a very different method.

While the Aleksandrov relation is a natural assumption when one of the measures is
positive on open sets, it turns out that there are numerous examples of measures µ and λ
satisfying µ = λ(K, ·) that are not Aleksandrov related. For instance, consider K = Bn and
µ and λ to be any even, absolutely continuous, equal measures supported on small symmetric
spherical caps ω, where ω ⊂ Sn−1 is a cap around the north pole and −ω ⊂ Sn−1 is a cap
around the south pole. Then, µ = λ = λ(K, ·), and µ(ω) + λ(ω∗) = λ(Sn−1), which violates
the Aleksandrov relation. Moreover, starting with the body K = Bn, we can perturb it along
the equator while preserving the convexity. We thereby obtain a family of convex bodies
such that every member still solves the Gauss Image Problem. This observation indicates
that, in general, the solution to the Gauss Image Problem may be highly non-unique.

Based on these considerations, we introduce a relaxation of the Aleksandrov relation for
the Gauss Image Problem. This relaxation turns out to be a necessary assumption for the
two measures to be related by a convex body. That is, for the existence of a convex body K
with origin in its interior such that µ = λ(K, ·). See Proposition 3.1.

Definition 1.3. Given Borel measures µ and λ on Sn−1, we say that µ is weakly Aleksandrov
related to λ if µ(Sn−1) = λ(Sn−1) and for each closed set ω ⊂ Sn−1, contained in a closed
hemisphere, there exists α ∈ (0, π

2
) such that

(1.6) µ(ω) ≤ λ(ωπ
2
−α),

where

(1.7) ωπ
2
−α :=

"

u∈ω
{v ∈ Sn−1 : u · v > cos(

π

2
− α)}.

Besides showing that the weak Aleksandrov relation is a necessary assumption for the exis-
tence of a solution to the Gauss Image Problem, we also show that the classical Aleksandrov
relation implies the weak Aleksandrov relation. The nature of the constant α is addressed in
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Section 3. In particular, if µ = λ(K, ·), then constant α in the weak Aleksandrov condition
is closely related to the inner to outer radius ratio of the body K. See Proposition 3.1 and
the discussion after it.

Now, with an appropriate necessary condition, we are ready to state the main result of
the paper. In the following, a measure µ is a discrete measure if it can be expressed as

(1.8) µ =
m#

i=1

µiδvi

where µi are some positive coefficients, and δvi is a Dirac measure of the set {vi}. For the
measure µ, we also define the set of polytopes Pµ as

(1.9) Pµ = conv{βivi | 1 ≤ i ≤ m}

where β = (β1, . . . , βm) ∈ Rm
>0.

Theorem 1.4. Let µ be a discrete Borel measure that is not concentrated on a closed hemi-
sphere, and let λ be an absolutely continuous Borel measure. If µ is weakly Aleksandrov
related to λ, then there exists a polytope P ∈ Pµ such that µ = λ(K, ·).

In particular, we establish that given a discrete measure µ and an absolutely continuous
measure λ, the weak Aleksandrov relation is a necessary and sufficient condition for the
existence of a solution to the Gauss Image Problem.

In conclusion, we would like to comment on the differences between the methods introduced
in this paper and those presented in [13]. The proof of Theorem 1.2 in [13] has the following
structure: First, it is shown that any convex body that maximizes the specific functional on
convex bodies (defined below, see (2.15)) is a solution to the Gauss Image Problem. Then,
by analyzing the classical Aleksandrov relation for specific measures, it is proven that any
sequence of convex bodies maximizing this functional exhibits a bound on the inner to outer
radius ratio of its elements. This bound is arguably the most challenging aspect of the
paper [13]. From the Blaschke selection theorem, we deduce that this sequence contains a
convergent subsequence that converges to a non-degenerate convex body K maximizing the
functional (2.15). The limiting body K, in turn, solves the Gauss Image Problem.

The main challenge and difference in the proof of Theorem 1.4, as compared to the main
result of [13], is that the weak Aleksandrov relation does not impose a bound on the inner
to outer radius ratio for the possible solution, unlike its strong counterpart. Going back to
the previously mentioned example of spherical caps, for any scalars λ1,λ2 > 0, define Kλ1,λ2

to be the convex hull in Rn of λ1ω ⊂ λ1S
n−1 and −λ2ω ⊂ λ2S

n−1. Note that any Kλ1,λ2 is
a solution to µ = λ(K, ·), where µ and λ are defined as before. (This is true because the
normal cones of Kλ1,λ2 do not change for radial directions contained in the support of µ,
when we vary λ1 and λ2. See Preliminaries for the definitions.) Hence, in contrast to the
classical Aleksandrov relation assumption, the solution body may contain parts that one can
dilate independently. Consequently, unlike the case when the classical Aleksandrov relation
is assumed, a sequence of convex bodies, say (Kn)

∞
n=1 such that Kn ⊂ rBn for all n and some

r, may maximize the functional while converging to a degenerate convex body. This makes
the proof of the main theorem in this paper vastly differ from that in [13], as not every
sequence of normalized convex bodies maximizing the functional is suitable for the proof.
To construct this sequence and overcome these challenges, we invoke a process that we call
the partial rescaling of convex bodies. See (4.17).
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It would be very interesting to see whether one could prove the result of the Theorem
1.2, the main results of [13], under the weak Aleksandrov condition instead of the classical
Aleksandrov condition. Our paper can be viewed as a step towards this direction. We state
this in the Conjecture 6.3.

2. Preliminaries

By Kn we denote the set of convex bodies (compact, convex subsets with nonempty interior
in Rn). By Kn

o ⊂ Kn we denote those convex bodies that contain the origin in their interiors.
Given K ∈ Kn

o , let x ∈ ∂K be a boundary point. The normal cone at x is defined by

(2.1) N(K, x) = {v ∈ Sn−1 : (y − x) · v ≤ 0 for all y ∈ K},
which parametrizes all normals at a given boundary point. For K ∈ Kn

o , the radial map
rK : Sn−1 → ∂K of K is defined for u ∈ Sn−1 by rK(u) = ru ∈ ∂K, where r > 0. Given a
subset ω of Sn−1, the radial Gauss Image of ω is defined as follows:

(2.2) αααK(ω) =
"

x∈rK(ω)

N(K, x) ⊂ Sn−1.

The radial Gauss Image map, αααK , maps sets of Sn−1 to sets of Sn−1. Outside of a spherical
Lebesgue measure zero set, the multivalued map αααK is singular valued. It is known that
αααK maps Borel measurable sets to Lebesgue measurable sets. See [37] for both of these
results. We denote the restriction of αααK to the corresponding singular valued map by αK .
For additional details, we refer the reader to [13].

The radial function ρK : Sn−1 → R is defined by:

(2.3) ρK(u) = max{a : au ∈ K}.
In this case, rK(u) = ρK(u)u. The support function is defined by:

(2.4) hK(x) = max{x · y : y ∈ K}.
For K ∈ Kn

o , we define its polar body K∗ by hK∗ := 1
ρK

.

We denote by rK the radius of the largest ball contained in K and centered at o. Similarly,
we denote RK to be the radius of the smallest ball containing K and centered at o. We will
refer to rK as the inner radius of body K, to RK as the outer radius of K, and to the ratio
rK
Rk

as the inner to outer radius ratio of K.
It is important to note that for any K ∈ Kn

o , the following identity holds:

(2.5) min ρK = minhK = rK ≤ Rk = max ρK = maxhK .

The support hyperplane to K with an outer unit normal v ∈ Sn−1 is defined as

(2.6) HK(v) = {x : x · v = hK(v)}.
Let H−(α, v) = {x : x · v ≤ α} and H(α, v) = {x : x · v = α}. Given a set S ⊂ Rn we write
its convex hull as

(2.7) conv(S).

For a set ω ⊂ Sn−1, we define coneω as the cone that ω generates, that is

(2.8) coneω = {tu : t ≥ 0 and u ∈ ω}.
We say that ω ⊂ Sn−1 is spherically convex if the cone that ω generates is a nonempty, proper,
convex subset of Rn. Therefore, a spherically convex set in Sn−1 is always nonempty and
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contained in a closed hemisphere of Sn−1. Given ω ⊂ Sn−1 contained in a closed hemisphere,
the polar set ω∗ is defined by:

ω∗ =
!

u∈ω
{v ∈ Sn−1 : u · v ≤ 0}.(2.9)

We note that the polar set is always spherically convex. If ω ⊂ Sn−1 is a closed set, we define
its outer parallel set ωα for some α ∈ (0, π

2
] to be

(2.10) ωα =
"

u∈ω
{v ∈ Sn−1 : u · v > cosα}.

As mentioned previously, αααK maps Borel measurable sets to Lebesgue measurable sets.
Given a Borel measure λ we, as in [13], define the Gauss Image measure of λ via K as

(2.11) λ(K,ω) := λ(αααK(ω))

for each Borel ω ∈ Sn−1. Note, however, that the naming is a bit misleading as, in general,
λ(K, ·) does not necessarily have to be a measure. For example, takes K to be a square

centered at the origin with sides perpendicular to vectors u1, u2, u3, u3. Let λ =
4$

i=1

δui
where

δui
are Dirac measures of sets {ui}. Let vectors v1 and v2 be such that rK(v1), rK(v2) are in

the interior of the side of K perpendicular to u1. Then,

(2.12) αααK({v1}) = αααK({v2}) = αααK({v1, v2}) = {u1}.
Implying that:

(2.13) 1 = λ(K, {v1}) = λ(K, {v2}) = λ(K, {v1, v2}),
which establishes that λ(K, ·) is not countably additive.

On the other hand, if λ is absolutely continuous, which is the case of this work, λ(K, ·)
is always a measure. For this and related results, see [13]. We also point out Lemma 3.3
in [13], which states that:

Lemma 2.1. If λ is an absolutely continuous Borel measure, and K ∈ Kn
o , then

(2.14)

%

Sn−1

f(u)dλ(K, ·) =
%

Sn−1

f(αK(v))dλ(v)

for each bounded Borel measurable function f : Sn−1 → R.

We note that if for a given µ and λ, there exists K ∈ Kn
o such that µ = λ(K, ·), then we

say that measures µ and λ are related by the convex body K. For K ∈ Kn
o and λ absolutely

continuous, we define the functional Φ(K,µ,λ) by

(2.15) Φ(K,µ,λ) :=

%
log ρKdµ+

%
log ρK∗dλ.

Sometimes, we will write Φ(K), suppressing some notation. Note that Φ(K,µ,λ) = Φµ,λ(K
∗)

in the notation of [13]. This functional is intimately associated with the Gauss Image Prob-
lem. For example, Theorem 8.2 in [13] shows that if µ is a Borel measure and λ is an
absolutely continuous Borel measure such that

(2.16) Φ(K,µ,λ) = sup
K′∈Kn

o

(K ′, µ,λ)
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for K ∈ Kn
o , then µ = λ(K, ·). It is important to stress that:

If µ = λ(K, ·), then µ = λ(cK, ·) for any c > 0.

Φ(K,µ,λ) = Φ(cK, µ,λ) for any c > 0.
(2.17)

That is, the nature of the problem is not sensitive to the rescaling of the convex bodies.
The Aleksandrov relation, as well as the weak Aleksandrov relation, were defined in the

Introduction. We simply note the interchangeable use of the terms “Aleksandrov condition”
and “Aleksandrov relation”.

A measure µ is called discrete if it takes the form:

(2.18) µ =
m#

i=1

µiδvi

where δvi are Dirac measures of sets {vi} containing a single vector vi ∈ Sn−1 and µi are
strictly positive coefficients. Aside from Proposition 3.3, the measure µ will always be
assumed to be discrete and written as in (2.18) with letters v and m reserved specifically for
µ.

Given a discrete measure µ not concentrated on a closed hemisphere, we define Pµ to be
the set of the convex hull of points {βivi} with βi > 0. In other words,

(2.19) Pµ = conv{βivi | 1 ≤ i ≤ m}
with β = (β1, . . . , βm) ∈ Rm

>0. Given any P ∈ Pµ, since µ is not concentrated on a closed
hemisphere, P contains the origin in its interior. Therefore, Pµ ⊂ Kn

o . Moreover, any
P ∈ Pµ is a polytope, such that each vertex of P is located in a radial direction vi for some
i ∈ {1, . . . ,m}. Note, however, that sometimes a polytope P ∈ Pµ might have fewer than m
vertices corresponding to some βjvj contained inside the convex hull of the remaining points.

The next part of notations can be viewed as a discrete analog to the standard concepts of
the support function and the Wulff shape. Given P ∈ Pµ, we define its representation to be
an m-tuple of positive numbers

(2.20) α = (α1, . . . ,αm) := (hP ∗(v1), . . . , hP ∗(vm)).

Note that if α is the representation of P then

P = conv{ vi
αi

| 1 ≤ i ≤ m}

P ∗ =
m!

i=1

H−(αi, vi)
(2.21)

Conversely, suppose we start with some m−tuple of positive numbers, γ. We define
Pγ ∈ Pµ to be the following:

(2.22) Pγ = (
m!

i=1

H−(γi, vi))
∗.

We call such P a dual Wulff Shape of the m−tuple γ. We refer to the representation of Pγ

as the Wulff tuple of γ. In particular, one has that if α is a Wulff tuple of γ, then

(2.23) αi ≤ γi.

Moreover, if αi < γi, then the facet of P ∗
γ in the direction vi is degenerate.
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If a polytope has an index a, such as Pa, we are going to write its coefficients in represen-
tation as:

αa = (αa,1, . . . ,αa,m)(2.24)

Given P ∈ Pµ with its representation denoted by the m-tuple α and a nonempty and not
full indexing set I ⊂ {1 . . .m}, we will denote by U,L, U∗, L∗ the following quantities:

U :=max
i∈I

αi,

L :=min
i∈I

αi,

U∗ :=max
i/∈I

αi,

L∗ :=min
i/∈I

αi.

(2.25)

It will usually be the case that:

(2.26) 0 < L∗ ≤ U∗ ≤ L ≤ U = 1.

If a polytope has an index t, such as Pt, we are going to write

(2.27) Pt,αt, Lt, Ut, L
∗
t , U

∗
t .

Finally, in the proofs of Lemma 6.1 and Lemma 6.2, we will need to use different index sets.
In the context of these Lemmas, we will denote the same quantities for a specific index set
I as:

(2.28) La(I), Ua(I), L
∗
a(I), U

∗
a (I).

We use the books of Schneider [37] as our standard reference. The books of Gruber and
Gardner are also good alternatives [14, 15].

3. Weak Aleksandrov Condition

Let us start by showing that the weak Aleksandrov relation is a necessary condition for
Borel measures to be related by a convex body.

Proposition 3.1. Given K ∈ Kn
o , suppose λ and λ(K, ·) are Borel measures. Then, λ is

weakly Aleksandrov related to λ(K, ·).
Remark. Note that if λ is an absolutely continuous Borel measure, then λ(K, ·) automatically
becomes a Borel measure. For more details, see Preliminaries section and Lemma 3.3 in
[13]. △
Proof. Since K ∈ Kn

o , there exists c > 0 such that rK
RK

> c. Consider some u ∈ Sn−1 and

v ∈ αααK(u). Then,

(3.1) rK ≤ hK(v) = ρK(u)uv ≤ RKuv

Hence, c < rK
RK

≤ uv. Therefore, for each u ∈ Sn−1, we have:

(3.2) αααK(u) ⊂ uarccos(c) ⊂ uπ
2
−α,

for some α, where 0 < α < π
2
. Therefore, for any closed set ω contained in a closed

hemisphere, since ωπ
2
−α =

&
u∈ω uπ

2
−α, we obtain:

(3.3) λ(K,ω) = λ(αααK(ω)) ≤ λ(ωπ
2
−α).

□
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In particular, the above proof shows that given measures λ and λ(K, ·), the constant α in
the weak Aleksandrov relation does not depend on the choice of a closed set ω contained in
a closed hemisphere. Moreover, the constant α in the above proof encompasses the bound
on rK

RK
. That is, the bound on the inner to outer radius ratio for body K. The following

Proposition is the step in the opposite direction. Recall the notation for a discrete measure
µ in (2.18).

Proposition 3.2. Suppose that a discrete Borel measure µ is weakly Aleksandrov related
to a Borel measure λ. Then there exists a uniform constant α ∈ (0, π

2
) such that for any

ω ⊂ Sn−1, a closed set contained in a closed hemisphere:

(3.4) µ(ω) ≤ λ(ωπ
2
−α)

Remark. We refer to this α as the uniform weak Aleksandrov constant for measures µ and
λ. △

Proof. Consider all possible I ⊂ {1 . . .m} such that {vi}i∈I are contained in a closed
hemisphere. Let ωI =

&
i∈I vi. Since µ and λ are weak Aleksandrov related, we have

µ(ωI) ≤ λ(ωI
π
2
−αI

) for some αI . Since there are only finitely many of those I satisfying the

assumption, we can choose α > 0 to be the minimum of the αI ’s. Now for any closed set ω
contained in a closed hemisphere, we obtain that for some I ⊂ {1 . . .m}:

(3.5) µ(ω) = µ(ω ∩ {vi}i∈{1...m}) = µ(ωI) ≤ λ(ωI
π
2
−α) ≤ λ(ωπ

2
−α),

where the last step follows from set inclusion. □

Finally, we note that the classical Aleksandrov relation easily implies the weak Aleksandrov
relation. In the following, µ is not necessarily a discrete measure.

Proposition 3.3. Suppose that a Borel measure µ is Aleksandrov related to Borel measure
λ. Then, µ is weakly Aleksandrov related to λ.

Proof. Since µ is Aleksandrov related to λ, for each compact, spherically convex set ω ⊂ Sn−1,
we obtain:

(3.6) µ(ω) < λ(Sn−1)− λ(ω∗) = λ(ωπ
2
).

Now, consider any closed set γ contained in a closed hemisphere. Let

(3.7) ω = 〈〈〈γ〉〉〉 := Sn−1 ∩ conv (cone γ),

where conv (cone γ) denotes the convex hull of cone γ. Note that the convex hull of any
set S ∈ Rn is given by all finite convex combinations of elements in S. Thus, recalling the
definition of a cone, we obtain the following: for each v ∈ ω, there exist vectors {vi}i∈I ⊂ γ
with I finite such that

(3.8) v =
#

i∈I

σivi where σi > 0.

Choose any u ∈ ωπ
2
. Then for some v ∈ ω, uv > 0. Hence, for some {vi}i∈I ⊂ γ with I

finite,

(3.9) uv =
#

i∈I

σiuvi > 0 where σi > 0.
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Thus, at least for one i ∈ I, we have that uvi > 0. Hence, u ∈ vi π
2
⊂ γπ

2
. We have that

ωπ
2
⊂ γπ

2
. Thus, we obtain the following chain of inequalities:

(3.10) µ(γ) ≤ µ(ω) < λ(ωπ
2
) ≤ λ(γπ

2
).

By the continuity of measures, λ(γπ
2
−α) → λ(γπ

2
) as α → 0. Hence, for a given closed set γ

contained in a closed hemisphere, there exists an α such that

(3.11) µ(γ) < λ(γπ
2
−α).

The weak Aleksandrov condition follows. □
One might wonder whether we can define the weak Aleksandrov relation merely by re-

stricting the definition to a collection of compact spherically convex sets instead of closed
sets contained in a closed hemisphere. We have not investigated this question, leaving it to
the reader if they are interested.

4. Essential Estimates and The Partial Rescaling of a Polytope

For the rest of the paper, we will assume that µ is a discrete Borel measure written as
in (2.18), which is not concentrated on a closed hemisphere. We will also assume that λ is
an absolutely continuous measure. We begin with the following lemma, which enables us to
concentrate our attention on polytopes only.

Lemma 4.1. Given any K ∈ Kn
o , there exists a polytope P ∈ Pµ such that:

(4.1) Φ(P, µ,λ) ≥ Φ(K,µ,λ).

Proof. Choose any K ∈ Kn
o . Define P as:

(4.2) P := conv{ρK(vi)vi | 1 ≤ i ≤ m}.
Clearly, P ∈ Pµ. Moreover, since P is a convex hull of a subset of K, P ⊂ K. Hence,
hP ≤ hk, which implies that:

(4.3)

%
log ρK∗dλ ≤

%
log ρP ∗dλ.

Simultaneously, by the definition of P , for any i we have that ρP (vi) ≥ ρK(vi). Since P ⊂ K,
we also have that ρP (vi) ≤ ρK(vi). Therefore, for all i, ρP (vi) = ρK(vi), and, thus,

(4.4)

%
log ρKdµ =

%
log ρPdµ.

Combining both equations (4.2) and (4.4), we obtain that Φ(K,µ,λ) ≤ Φ(P, µ,λ). □
Theorem 8.2 in [13] shows that if K ∈ Kn

o maximizes the functional Φ(·, µ,λ) for a Borel
measure µ and an absolutely continuous measure λ, then K solves the Gauss Image Problem.
Thus, to prove Theorem 1.4, it is sufficient to establish the existence of a K ∈ Kn

o that
maximizes the functional. Lemma 4.1 permits us to restrict bodies to polytopes of the above
form, allowing us to work exclusively within the class Pµ.

We start with some Lemmas concerning the class Pµ. For the rest of the article, we are
going to work with the notation defined in (2.19)-(2.25). Recall that for a given P ∈ Pµ, we
call an m-tuple α to be a representation of P if it is equal to

(4.5) α = (α1, . . . ,αm) = (hP ∗(v1), . . . , hP ∗(vm)).
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Lemma 4.2. Given P ∈ Pµ, let α be its representation. Then, for any u ∈ Sn−1:

(4.6) ρP ∗(u) = min
∀i s.t. uvi>0

αi

uvi
.

Moreover,

(4.7) ρP ∗(u) =
αi

uvi

if and only if rP ∗(u) ∈ HP ∗(vi).

Proof. Recall from (2.21) that P ∗ can be written as,

(4.8) P ∗ =
m!

i=1

H−(αi, vi).

Fix some u ∈ Sn−1. Suppose for some i, uvi ≤ 0. Then H−(αi, vi) contains the entire ray in
the direction of u starting at the center. Suppose now for a given i, uvi > 0. Then a ray in
the direction of u starting at the center intersects the hyperplane H(αi, vi). In this case, it
is straightforward to verify that the distance from the center to the intersection will be:

(4.9)
αi

uvi

Therefore, looking back at the equation (4.8), we obtain that

(4.10) ρP ∗(u) = min
∀i s.t.uvi>0

αi

uvi
.

The last part of the statement follows from equation (4.10) and (4.8). □
The following lemma is a core estimate, which will later be used to properly rescale the

polytopes without decreasing the value of the functional.

Lemma 4.3. Given P ∈ Pµ, let α be its representation. If we are given a nonempty and
not full indexing set I ⊂ {1 . . .m}, with U∗ < L, then:

(4.11)
"

i/∈I

(vi)arccos U∗
L

⊂ αααP (
"

i/∈I

vi).

Proof. Suppose that for a given direction u ∈ Sn−1, we have ρP∗(u) < L. Then, using Lemma
4.2 we obtain

(4.12) min
∀i s.t. uvi>0

αi

uvi
= ρP ∗(u) < L.

Suppose the minimum is achieved for some index j. Then, from the previous equation, using
the definition of L, we obtain:

(4.13)
αj

uvj
< L = min

i∈I
αi.

Thus, since 0 < uvj ≤ 1, we have that j /∈ I. Now, applying the second part of Lemma 4.2
we obtain that

rP ∗(u) ∈ HP ∗(vj) ⇔
rP (vj) ∈ HP (u) ⇔

u ∈ αααP (vj).

(4.14)



12 VADIM SEMENOV

Since j /∈ I, we obtain u ∈ αααP (
&

i/∈I vi).
Thus, we have established that if for a given direction u ∈ Sn−1, we have ρP∗(u) < L, then

u ∈ αααP (
&

i/∈I vi). Now, pick any u ∈ (vj)arccos U∗
L

for some j /∈ I. We obtain uvj >
U∗

L
. Thus,

combining this with equation (4.12) and the fact that j /∈ I, we obtain:

(4.15) ρP ∗(u) = min
∀i s.t. uvi>0

αi

uvi
≤ αj

uvj
≤ U∗

uvj
< L.

Thus, ρP∗(u) < L and the claim follows from the first part of the proof.
□

In the upcoming proof of Theorem 1.4, we will utilize what we refer to as the partial
rescaling of a polytope. Let us now describe this construction. Suppose we are given a
polytope P ∈ Pµ, along with a nonempty and not full indexing set I ∈ {1 . . .m}. Let α
denote the representation of P . Recall that P and P ∗ can be written as

P = conv{ vi
αi

| 1 ≤ i ≤ m}

P ∗ =
m!

i=1

H−(αi, vi)
(4.16)

We would like to rescale the half spaces that correspond to the index set I in the second
formula by a factor t. We call this a partial rescaling of polytope P with index set I. In
terms of the preceding formula, this can be written as

Pt = conv
'
{ vi
αi

| i ∈ I} ∪ { vi
tαi

| i /∈ I}
(

P ∗
t =

!

i∈I

H−(αi, vi)
!

i/∈I

H−(tαi, vi).
(4.17)

In fact, Pt is the dual Wulff Shape of the m-tuple γt defined by:

γt,i = αi if i ∈ I

γt,i = tαi if i /∈ I
(4.18)

See the Preliminaries section for the definitions. We will always assume that t ∈ (0, 1]. The
most important point to make about the partial rescaling is that the representation of Pt is
not necessarily equal to γt. For example, if the set {vi | i /∈ I} is not contained in a closed
hemisphere, P ∗

t will approach center in the Hausdorff distance as t → 0, and, thus, for all
i ∈ {1 . . .m} we have αt,i → 0 while γt,i = αi remains constant. If αt is the representation
of Pt, we can only claim that:

(4.19) αt,i ≤ γt,i.

The following lemma characterizes the behavior of the partial rescaling. It can be seen as
a discrete analog to the classical results about Wulff Shapes.

Lemma 4.4. Suppose P ∈ Pµ and I ⊂ {1 . . .m} is a nonempty and not full indexing set.
Let α be its dual representation. Consider the m−tuple γt defined by:

γt,i = αi if i ∈ I

γt,i = tαi if i /∈ I.
(4.20)
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Let Pt be the dual Wulff Shape of γ. Let αt denote its representation. Then,

tαi ≤ αt,i ≤ αi for i ∈ I

αt,i = γi if i /∈ I.
(4.21)

Proof. Let i /∈ I. By the definition of the representation,

(4.22) αt,i = hP ∗
γt
(vi).

From (4.17), we obtain that tP ∗ ⊂ P ∗
γt . Thus,

(4.23) αt,i = hP ∗
γt
(vi) ≥ thtP ∗(vi) = tαi.

On the other hand, from the definition of the dual Wulff Shape we have that

(4.24) P ∗
γt ⊂ P ∗ ∩H−(tαi, vi),

which implies that

(4.25) αt,i = hP ∗
γt
(vi) ≤ tαi.

If i ∈ I, then, as tP ∗ ⊂ P ∗
γt ⊂ P ∗, we obtain

(4.26) tαi ≤ αt,i ≤ αi.

□

5. The Partial Rescaling of a Polytope and the Functional

We now turn our attention to the key lemma related to the partial rescaling. Under the
assumption of the weak Aleksandrov relation, as we have noted, we can no longer claim that
for any sequence maximizing the functional, there is a lower bound on the inner to outer
radius ratio. The following Lemma provides us with the tool to overcome this difficulty. It
establishes that, with proper assumptions, the partial rescaling does not decrease the value
of the functional.

Lemma 5.1. Suppose P ∈ Pµ and I ⊂ {1 . . .m} is a nonempty and not full indexing set.
Let α be its dual representation. Consider the m-tuple γt defined by

γt,i = αi if i ∈ I

γt,i = tαi if i /∈ I
(5.1)

Let Pt be the dual Wulff shape of γt. Given some t0 < 1, suppose that

(5.2) µ(
"

i/∈I

vi) ≥ λ(αααPt0
(
"

i/∈I

vi)),

then Φ(Pt0) ≥ Φ(P ).

Proof. Before we start to compare Φ(Pt0) with Φ(P ), let us first analyze the behavior of the
radial functions under the partial rescaling. Let t be any value between t0 and 1. First, we
claim that for any u ∈ Sn−1:

(5.3) ρP ∗
t
(u) = min

∀i s.t.uvi>0
{ αi

uvi
if i ∈ I or

tαi

uvi
if i /∈ I}.
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The proof of this claim is the same as the proof of Lemma 4.2. We also notice that from the
equation (4.17) we obtain the following relation:

(5.4) αααPt2
(
"

i/∈I

vi) ⊂ αααPt1
(
"

i/∈I

vi),

for 0 < t1 < t2 ≤ 1. In fact, from (4.17) it is straightforward to verify that

(5.5)
"

0<t≤1

αααPt(
"

i/∈I

vi) =
"

i/∈I

(vi)π
2
.

Examining equations (5.3), (5.4), and (5.5), we can separate three possible behaviors of
ρP ∗

t
(u) as a function of t for t ≤ 1:

• If u ∈ αααP (
&

i/∈I vi), then u ∈ αααP (vj) for some j /∈ I. Thus, rP (vj) ∈ HP (u) which is
equivalent to rP ∗(u) ∈ HP ∗(vj). Thus, from Lemma 4.2 we obtain

(5.6) ρP ∗(u) =
αj

uvj
,

where j /∈ I, and, in particular, the minimum in (5.3) is attained at j /∈ I. Therefore,
from (5.3) we obtain that:

(5.7) ρP ∗
t
(u) = tρP ∗(u).

• If u /∈
&

i/∈I(vi)π
2
, then uvi ≤ 0 for all i /∈ I. Thus, from equation (5.3) (or equation

(5.5)) we obtain that:

(5.8) ρP ∗
t
(u) = ρP ∗(u).

• If u ∈
&

i/∈I(vi)π
2
\αααP (

&
i/∈I vi), then then by applying equations (5.3), (5.4), and (5.5)

in a way similar to the previous two cases, we obtain that as t decreases, ρP ∗
t
(u)

remains constant up until the first moment when u ∈ αααPt(
&

i/∈I vi), after which it
starts to scale. Let t(u) be the maximum t for which u ∈ αααPt(

&
i/∈I vi). We obtain:

ρP ∗
t
(u) = ρP ∗(u) when t ∈ [t(u), 1].

ρP ∗
t
(u) =

t

t(u)
ρP ∗(u) when t ∈ (0, t(u)].

(5.9)

By looking at the dual, using Lemma 4.4 and the convex hull equation (4.17) for P , we
obtain the following behavior for ρPt(vi):

• If i /∈ I, then

(5.10) ρPt(vi) =
ρP (vi)

t
.

• If i ∈ I, then ρPt(vi) is non-decreasing as t decreases and

(5.11) ρPt(vi) ≤
ρP (vi)

t
.

Now with the help of equations (5.7)-(5.11) regarding the behavior of ρPt and ρP ∗
t
, we would

like to compute Φ(Pt1)−Φ(Pt2) for some 0 < t1 < t2 ≤ 1. Using (5.4) and (5.5), we separate



THE GAUSS IMAGE PROBLEM WITH WEAK ALEKSANDROV CONDITION 15

Φ(Pt1)− Φ(Pt2) into the following terms:

Φ(Pt1)− Φ(Pt2) =%
log(ρPt1

)− log(ρPt2
)dµ+

%

αααPt2
(
!

i/∈I vi)

log(ρP ∗
t1
)− log(ρP ∗

t2
)dλ+

%

Sn−1\
!

i/∈I(vi)π2

log(ρP ∗
t1
)− log(ρP ∗

t2
)dλ+

%

!
i/∈I(vi)π2

\αααPt1
(
!

i/∈I vi)

log(ρP ∗
t1
)− log(ρP ∗

t2
)dλ

%

αααPt1
(
!

i/∈I vi)\αααPt2
(
!

i/∈I vi)

log(ρP ∗
t1
)− log(ρP ∗

t2
)dλ

(5.12)

Now, will estimate each term in the above equation.

The first term
First, we look at the integral with respect to µ. From (5.10) and since ρPt(vi) is non-
decreasing for i ∈ I, see (5.11), we obtain that:

%
log(ρPt1

)− log(ρPt2
)dµ =

#

i∈I

'
log(ρPt1

)− log(ρPt2
)
(
µ(vi) +

#

i/∈I

'
log(ρPt1

)− log(ρPt2
)
(
µ(vi) ≥

#

i/∈I

'
log(ρPt1

)− log(ρPt2
)
(
µ(vi) ≥

log(
t2
t1
)µ(

"

i/∈I

vi).

(5.13)

The second term
For the second term, if u ∈ αααPt2

(
&

i/∈I vi), then t1 ≤ t(u) and t2 ≤ t(u). Thus, from (5.9) we
obtain:

log(ρP ∗
t2
(u))− log(ρP ∗

t1
(u)) =

log(
t1
t(u)

ρP ∗(u))− log(
t2
t(u)

ρP ∗(u)) =

log(
t1
t2
).

(5.14)

Therefore, for the second term, we obtain

(5.15)

%

αααPt2
(
!

i/∈I vi)

log(ρP ∗
t1
)− log(ρP ∗

t2
)dλ = log(

t1
t2
)λ(αααPt2

(
"

i/∈I

vi)).
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The third term
From (5.8), the third term is computed as::

%

Sn−1\
!

i/∈I(vi)π2

log(ρP ∗
t1
)− log(ρP ∗

t2
)dλ = 0.(5.16)

The fourth and the fifth terms
Now, we want to estimate the last two terms. As in (5.9) given

(5.17) u ∈
"

i/∈I

(vi)π
2
\αααPt2

(
"

i/∈I

vi)

let t(u) denote the maximum t such that u ∈ αααPt(
&

i/∈I vi). Notice that if

(5.18) u ∈
"

i/∈I

(vi)π
2
\αααPt1

(
"

i/∈I

vi)

from (5.4) and (5.5) we obtain that t(u) < t1 < t2. And, thus, from (5.9) we obtain:

(5.19) log(ρP ∗
t1
(u))− log(ρP ∗

t2
(u)) = log(ρP ∗(u))− log(ρP ∗(u)) = 0,

which implies that the fourth term is zero. On the other hand, if

(5.20) u ∈ αααPt1
(
"

i/∈I

vi) \αααPt2
(
"

i/∈I

vi),

then t(u) ∈ [t1, t2). Thus, from (5.9) we obtain:

|
%

αααPt1
(
!

i/∈I vi)\αααPt2
(
!

i/∈I vi)

log(ρP ∗
t1
)− log(ρP ∗

t2
)dλ| =

|
%

αααPt1
(
!

i/∈I vi)\αααPt2
(
!

i/∈I vi)

log(
t1
t(u)

ρP ∗(u))− log(ρP ∗
t
(u))dλ| ≤

λ
'
αααPt1

(
"

i/∈I

vi) \αααPt2
(
"

i/∈I

vi)
(
|log(t1

t2
)|.

(5.21)

From the continuity of measure λ and since λ is absolutely continious, as t1 → t2 (with
t1 < t2), we find that

(5.22) λ
'
αααPt1

(
"

i/∈I

vi) \αααPt2
(
"

i/∈I

vi)
(
→ λ

'
∂(αααPt2

(
"

i/∈I

vi))
(
= 0,

where ∂ denotes the boundary of the set in Sn−1. So, in particular, given any ε > 0 for all
t1 sufficiently close enough to t2, the right side at the end of (5.21) is less than ε|log( t1

t2
)|.

Combining all of the above, we obtain that for 0 < t1 < t2 ≤ 1 such that t1 is sufficiently
close to t2:

Φ(Pt1)− Φ(Pt2) ≥ log(
t2
t1
)µ(

"

i/∈I

vi) + log(
t1
t2
)λ(αααPt2

(
"

i/∈I

vi))− ε|log t1
t2
|

= log(
t2
t1
)(µ(

"

i/∈I

vi)− λ(αααPt2
(
"

i/∈I

vi))− ε).
(5.23)

Now, we are going to analyze two cases.
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Case 1. Given t2 ∈ (0, 1], suppose µ(
&

i/∈I vi) > λ(αααPt2
(
&

i/∈I vi)).

Then (5.23), implies that there exists t1 < t2 such that for all t ∈ [t1, t2), Φ(Pt) > Φ(Pt2).

Case 2. Given t2 ∈ (0, 1], suppose µ(
&

i/∈I vi) = λ(αααPt2
(
&

i/∈I vi)).

Then, from (5.4) and (5.5),

(5.24) λ
'
αααPt1

(
"

i/∈I

vi) \αααPt2
(
"

i/∈I

vi)
(
= 0.

This forces the estimate (5.21) to be equal to zero. Therefore, the equation (5.23) in this
case refines to the following:

Φ(Pt1)− Φ(Pt2) ≥ log(
t2
t1
)µ(

"

i/∈I

vi) + log(
t1
t2
)λ(αααPt2

(
"

i/∈I

vi))

= log(
t2
t1
)(µ(

"

i/∈I

vi)− λ(αααPt2
(
"

i/∈I

vi))) = 0.
(5.25)

Therefore, in this case, for all t ∈ (0, t2] we obtain Φ(Pt1) ≥ Φ(Pt2).
We are now prepared to conclude the proof. Recall that we were given t0 < 1 such that

(5.26) µ(
"

i/∈I

vi) ≥ λ(αααPt0
(
"

i/∈I

vi)).

From (5.4), we obtain that the same statement holds for any t2 ∈ [t0, 1]:

(5.27) µ(
"

i/∈I

vi) ≥ λ(αααPt2
(
"

i/∈I

vi)).

Suppose now that Φ(Pt0) < Φ(P1). Since Φ(Pt) is continuous, let t2 ∈ (t0, 1] be the smallest
value such that Φ(Pt2) = Φ(P1). Then, for all t ∈ [t0, t2), Φ(Pt) < Φ(Pt2). If

(5.28) µ(
"

i/∈I

vi) > λ(αααPt2
(
"

i/∈I

vi))

then a contradiction arises from Case 1. If

(5.29) µ(
"

i/∈I

vi) = λ(αααPt2
(
"

i/∈I

vi))

Then, applying Case 2 would imply that Φ(Pt0) = Φ(Pt2), which is also a contradiction.
Therefore, Φ(Pt0) ≥ Φ(P1), which was the desired. □

The next Lemma is a core component of the proof of Theorem 1.4, where we utilize two
previous technical results: Lemma 4.3 and Lemma 5.1. Before we begin with the proof, let
us first try to explain the statement of the next lemma in a more intuitive way. Suppose we
are given some P ∈ Pµ, and a nonempty and not full indexing set I ⊂ {1 . . .m}. Suppose
for this indexing set we have the following:

0 < L∗ ≤ U∗ < L ≤ U = 1

L

U
≈ 1,

U∗

L
≈ 0,

L∗

U∗ ≈ 1
(5.30)
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Then, Lemma 5.2 claims that we can find a new polytope Pr ∈ Pµ with Φ(Pr) ≥ Φ(P ) such
that:

0 < L∗
r ≤ U∗

r < Lr ≤ Ur = 1

Lr

Ur

≈ 1,
U∗
r

Lr

≈ cos(
π

2
− α),

L∗
r

U∗
r

≈ 1,
(5.31)

where α is the uniform weak Aleksandrov constant from Proposition 3.2.
Even though the Aleksandrov condition is not stated explicitly, it is embedded in the

following Lemma as part of the assumption about:

(5.32) µ(
"

i/∈I

vi) ≤ λ(
"

i/∈I

(vi)π
2
−α).

We again recall that we use the notation established in (2.19)-(2.25).

Lemma 5.2. Suppose P ∈ Pµ is such that maxi αi = 1, and I ⊂ {1 . . .m} is a nonempty
and not full indexing set. Suppose

(5.33) µ(
"

i/∈I

vi)) ≤ λ(
"

i/∈I

(vi)π
2
−α)

for some 0 < α < π
2
. Suppose U∗ < Lcos(π

2
− α). In particular, 0 < L∗ ≤ U∗ < L ≤ U = 1.

We claim that there exists Pr ∈ Pµ, such that:

Ur = 1

Lr = L

U∗
r ≤ L cos(

π

2
− α)

L∗
r =

L∗

U∗L cos(
π

2
− α)

(5.34)

Moreover, αi = αr,i for i ∈ I and Φ(Pr) ≥ Φ(P ).

Proof. We want to rescale P for indexing set I as:

(5.35) P ∗
t =

!

i∈I

H−(tαi, vi)
!

i/∈I

H−(αi, vi).

Note that this is opposite to the notation used in Lemma 5.1 and Lemma 4.4, where we
rescaled indices i /∈ I, but here we rescale indices i ∈ I. We define

(5.36) t0 =
U∗

L cos(π
2
− α)

From our assumptions, 0 < t0 < 1. Our goal is to analyze P ∗
t0
and to confirm that Φ(Pt0) ≥

Φ(P ) with the help of Lemma 5.1. Recall, the equation (5.3) from the proof of Lemma 5.1.
Using it, we can write for u ∈ Sn−1:

(5.37) ρP ∗
t
(u) = min

∀i s.t.uvi>0
{ tαi

uvi
if i ∈ I or

αi

uvi
if i /∈ I}.
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From this, using definitions of L∗
t , U

∗
t , Lt, Ut we immediately obtain from Lemma 4.4 the

following:

Ut = tU

Lt = tL

U∗ ≥U∗
t ≥ tU∗

(5.38)

Notice that from the previous equation and the definition of t0:

(5.39) U∗
t0
≤ U∗ = t0L cos(

π

2
− α) ≤ Lt0 cos(

π

2
− α).

In particular,

(5.40) U∗
t0
< Lt0 .

Therefore, we can apply Lemma 4.3 to Pt0 to obtain:

(5.41) λ(
"

i/∈I

(vi)
arccos

U∗
t0

Lt0

) ≤ λ(αααPt0
(
"

i/∈I

vi)).

This, combined with the assumption (5.33) and the estimate (5.39), gives us the following:

(5.42) .µ(
"

i/∈I

vi)) ≤ λ(
"

i/∈I

(vi)π
2
−α) ≤ λ(

"

i/∈I

(vi)
arccos

U∗
t0

Lt0

) ≤ λ(αααPt0
(
"

i/∈I

vi)).

Therefore, since αααPt0
(
&

i/∈I vi)
)
αααPt0

(
&

i∈I vi) is λ measure zero, as it is Lebesgue measure
zero, and since the measures have equal weights, we obtain from the above that the reverse
holds for αααPt0

(
&

i∈I vi),

µ(
"

i∈I

vi) ≥ λ(αααPt0
(
"

i∈I

vi)).(5.43)

Therefore, we can apply Lemma 5.1 (again, notice the mentioned reverse of the notation for
index set) to conclude:

(5.44) Φ(Pt0) ≥ Φ(P ).

We define Pr to be rPt0 for some r > 0, so that maxi αr,i = 1. We obtain,

(5.45) Φ(Pr) = Φ(Pt0) ≥ Φ(P ).

What remains is to establish the values of U∗
r , L

∗
r, Lr as well as αr,i for i ∈ I.

Firstly, we notice from (2.5):

(5.46) L∗
t ≥ min

u∈Sn−1
hP ∗

t
(u) = min

u∈Sn−1
ρP ∗

t
(u).

We are interested in whether ρP ∗
t
(u) decreases. Notice that for t ≥ t0, we have

(5.47) t ≥ t0 =
U∗

L cos(π
2
− α)

≥ L∗

L cos(π
2
− α)

>
L∗

L
.

Now, from the previous equation, for any i ∈ I if uvi > 0, we have

(5.48)
tαi

uvi
>

L∗αi

L
> L∗.

We also have that for i /∈ I and uvi > 0:

(5.49)
αi

uvi
≥ L∗.
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Combining both previous equations and using (5.37), we obtain that ρP ∗
t
(u) ≥ L∗ for any

u ∈ Sn−1 and for any t ≥ t0. Therefore, we can apply (5.46) to deduce that L∗
t ≥ L∗. This,

combined with the fact that L∗
t can only decrease as t decreases and that L∗

1 = L∗, imply
that L∗

t = L∗ for t ≥ t0.
Summarizing, we obtain that for t ≥ t0:

Ut = tU

Lt = tL

U∗ ≥U∗
t ≥ tU∗

L∗
t = L∗.

(5.50)

Recall that αt is a representation for Pt. Notice that

(5.51) max
i

αt,i = max(Ut, U
∗
t ).

Now, since U = 1, from the definition of t0 and (5.50) we obtain

(5.52) U∗
t ≤ U∗ = t0L cos(

π

2
− α) < t0 = t0U = Ut0 .

Therefore, combining two previous equations, we obtain

(5.53) max
i

αt,i = max(Ut, U
∗
t ) = Ut = t.

Recall that we defined Pr to be equal to rPt0 such that maxi αr,i = 1. In particular, from
(5.47), we see that r = t0. Thus, we obtain for Pr that:

Ur = 1

Lr =
Lt0

t0
= L

U∗
r =

U∗
t0

t0
≤ U∗

t0
= L cos(

π

2
− α)

L∗
r =

L∗
t0

t0
=

L∗

U∗L cos(
π

2
− α).

(5.54)

Now, it only remains to show that for i ∈ I, we have that αi = αr,i. For this we apply
equation Pr = t0Pt0 and Lemma 4.4 for Pt0 (again noting that we rescale for i ∈ I and not
for i /∈ I) to conclude that for i ∈ I,

(5.55) αr,i =
αt0,i

t0
= αi.

□

6. Proof of the Main Result

We are ready to start the proof Theorem 1.4. Our strategy is first to pick a sequence
of polytopes that maximize the functional Φ. Then, we will use Lemma 5.2 to modify
this sequence, ensuring that it converges to a non-degenerate convex polytope. The proof
heavily relies on the notations from (2.19)-(2.25) for varying index sets. We recall that, given
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a polytope with index n, as in Pn, and an index set I ∈ {1 . . .m} we write

Un(I) :=max
i∈I

αi,

Ln(I) :=min
i∈I

αi,

U∗
n (I) :=max

i/∈I
αi,

L∗
n(I) :=min

i/∈I
αi.

(6.1)

where αn = (αn,1, . . . ,αn,m) is the representation of Pn.

Proposition 6.1. Suppose µ is a discrete measure not concentrated on a closed hemisphere
and λ is an absolutely continuous Borel measure. Suppose µ is weakly Aleksandrov related to
λ. Then there exists a sequence of polytopes Pn ∈ Pµ maximizing Φ(·), such that it converges
to some P ∈ Pµ.

Proof. Let (Pn)
∞
n=1 be any sequence that maximizes the functional. For each n, let αn be the

representation of Pn. Rescale each Pn so that maxi αn,i = 1. Since the set {vi | 1 ≤ i ≤ m} is
not contained in a closed hemisphere, it follows from maxi αn,i = 1 that there exists R > 0
such that for all n we have RP ∗

n
< R. Thus, we obtained a sequence that maximizes the

functional and has a common bound on the outer radii of the duals.
For every permutation σ in Sm, where Sm represents the set of all possible permutations

of m elements, we define the set Aσ ⊂ N to contain all indicies n such that:

(6.2) 1 = αn,σ(1) ≥ αn,σ(2) ≥ . . .αn,σ(m) > 0

Since N = ∪σ∈Sn−1Aσ, there exists σ ∈ Sm such that one of these sets is infinite. Without loss
of generality, we let σ be the identity. We then take the subsequence of (Pn)

∞
n=1 containing

only elements in Aσ. Since we will never use the original sequence, we redefine the constructed
subsequence to be (Pn)

∞
n=1.

Thus, we obtain that for each n:

(6.3) 1 = αn,1 ≥ αn,2 ≥ . . . ≥ αn,m > 0

Using standard compactness arguments, we can pass to the subsequence, which we again
redefine to be (Pn)

∞
n=1, such that P ∗

n converges to some convex body K, which can be written
as:

(6.4) K =
m!

i=1

H−(αi, vi),

where αi are given by

(6.5) lim
n→∞

αn,i = αi.

Moreover, through repeated application of compactness, we can assume as well that for each
i ∈ {1 . . .m− 1}, there exists βi ∈ [0, 1]:

(6.6) lim
n→∞

αn,i+1

αn,i

= βi,
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since 0 < αn,i+1 ≤ αn,i from (6.3). Notice that from (6.6) we also trivially obtain the following
equation:

(6.7) lim
n→∞

αn,i+k

αn,i

=
*

0≤j≤k−1

βi+j,

We also have the following equation for αi:

(6.8) 1 = α1 ≥ α2 ≥ . . . ≥ αm ≥ 0

Note that if all coefficients αi > 0, then K contains the center in its interior, and, thus, Pn

will converge to K∗ = P ∈ Pµ, which is what we desired. Suppose it is not the case. Then,
in particular, from (6.8), we obtain that αm = 0. Since α1 = 1, we obtain that at least one
of the variables βi is equal to zero.

Now, we will construct indexing sets Ij, which correspond to what we call different rates
of convergence of αn,i to zero. Suppose there are k indices for which βi is equal to zero. Let
i0 ≤ i2 ≤ . . . ≤ ik−1 represent all indices such that βij = 0. For convenience, let ik = m. We
define:

I0 ={1, . . . , i0}
I1 ={i0 + 1, . . . , i1}

...

Ik ={ik−1 + 1, . . . ,m}

(6.9)

Notice that by construction, these sets are nonempty and not full, and their union is
{1 . . .m}. Moreover, from (6.3), (6.6), and from the definitions of sets Ij and indices ij,
we obtain the following inequalities:

(6.10) 1 = Un(I0) ≥ Ln(I0) ≥ Un(I1) ≥ Ln(I1) > . . . > Un(Ik) ≥ Ln(Ik) > 0

(6.11) lim
n→∞

Un(Ij+1)

Ln(Ij)
= lim

n→∞

αn,ij+1

αn,ij

= βij = 0

(6.12) lim
n→∞

Ln(Ij)

Un(Ij)
= lim

n→∞

αn,ij

αn,ij−1+1

> cj for some constant cj > 0.

Intuitively, each Ij contains elements that converge to 0 at the same rate. For example,
from (6.4), (6.10)-(6.12), we see that i ∈ I0 if and only if αi > 0. On the other hand,
elements with an index in the set IK converge to zero the fastest. We call such a sequence of
polytopes to be degenerate of order k. If we have a convergent sequence with limit K that
is degenerate of order 0, then K∗ ∈ Pµ. Therefore, to prove the proposition, it is sufficient
to show that for a given sequence that is degenerate of order k, we can always find a new
sequence of polytopes that is degenerate of a strictly lesser order than k and such that the
new sequence still maximizes the functional. This will be our goal for the rest of the proof.

Let I = I0∪ I1 . . .∪ Ik−1. Note that the set {vi | i /∈ I} is contained in a closed hemisphere
as otherwise P ∗

n would converge to zero everywhere, which would contradict our assumption
that maxi αn,i = 1. Since µ and λ are weak Aleksandrov related, using Proposition 3.2, we
obtain that there exists a uniform weak Aleksandrov constant α > 0. Therefore, since the
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set {vi | i /∈ I} is a closed set and contained in a closed hemisphere, we can write:

(6.13) µ(
"

i/∈I

vi)) ≤ λ(
"

i/∈I

(vi)π
2
−α).

From (6.11) we can find N such that ∀n > N ,

(6.14)
U∗
n (I)

Ln(I)
=

Un(Ik)

Ln(Ik−1)
< cos(

π

2
− α).

It should also be noted that for all n we have that Un(I) = Un(I0) = 1. Thus, after combining
this with (6.13) and (6.14), for each n > N , we can apply Lemma 5.2 to Pn and the index
set I to construct the partially rescaled polytopes Pr,n. Let (Pr,n)

∞
n=N be the newly obtained

sequence of partially rescaled polytopes. Let αr,n be the representations of Pr,n.
First of all, notice that since Φ(Pr,n) ≥ Φ(Pn), this sequence still maximizes the functional

Φ(·). Secondly, from Lemma 5.2, we also have that for i ∈ I,

(6.15) αr,n,i = αn,i.

We also note the following identities based on Lemma 5.2:

Ur,n(I) =1

Lr,n(I) =Ln(I)

U∗
r,n(I) ≤Ln(I) cos(

π

2
− α)

L∗
r,n(I) =

L∗
n(I)

U∗
n (I)

Ln(I) cos(
π

2
− α)

(6.16)

From (6.3), (6.15), and (6.16), we obtain:

(6.17) 1 = αn,1 = αr,n,1 ≥ αn,2 = αr,n,2 ≥ . . . = αr,n,ik−1
≥

U∗
r,n(I)

cos(π
2
− α)

> U∗
r,n(I) > 0

Therefore, sets I0, I1, . . . , Ik−2, which contained coefficients with a rate of convergence up to
k−2, remain the same for the newly constructed sequence of polytopes (Pr,n)

∞
n=N . Moreover,

Ik−1 still consists of the coefficients that converge to zero with a rate k−1. We will show that
for the subsequence of the newly constructed sequence of rescaled polytopes, the coefficients
from the index set Ik converge with a rate k − 1 as well.

From (6.16) and (6.12), for coefficients in Ik we have the following bound:

(6.18) 1 ≥
L∗
r,n(I)

U∗
r,n(I)

≥ L∗
n(I)

U∗
n (I)

=
Ln(Ik)

Un(Ik)
> ck > 0

Moreover, from (6.16) and (6.12), we have:

(6.19)
L∗
r,n(I)

αr,n,ik−1

=
L∗
r,n(I)

Ln(I)
=

L∗
n(I)

U∗
n (I)

cos(
π

2
− α) > ck cos(

π

2
− α) > 0

While it is true that for i ∈ I, coefficients αr,n,i converge as they are equal to αn,i, they
might not do so for i /∈ I. By applying compactness, we can ensure that they converge.
Moreover, (6.18) guarantees that we can apply the same construction as in the beginning to
ensure that all the ratios between the elements converge for i /∈ I to some values in the range
[ck,

1
ck
]. Since the proof does not change, for the sake of notational simplicity, we assume that

all elements, as well as all their ratios, converge for i /∈ I in (Pr,n)
∞
n=N . As at the beginning
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of the proof, we pick some subsequence, so that for some permutation σ of elements in IK ,
we have the following based on (6.17):

(6.20) 1 = αr,n,1 ≥ αr,n,2 ≥ . . . ≥ αr,n,ik−1
> U∗

r,n(I) = αr,n,σ(ik−1+1) ≥ . . . ≥ αr,n,σ(m) > 0

This, combined with (6.19), establishes that all coefficients with index i ∈ Ik converge the
same as coefficient αr,n,ik−1

:

(6.21) lim
n→∞

αr,n,i

αr,n,ik−1

≥ lim
n→∞

L∗
r,n(I)

αr,n,ik−1

> ck cos(
π

2
− α) > 0.

Since αr,n,ik−1
converges with a rate k− 1, we have constructed a sequence of polytopes that

is degenerate of order k − 1. This finishes the proof. □
The proof of Theorem 1.4 immediately follows by an application of Theorem 8.2 in [13].

Theorem 1.4 Proof. By Proposition 6.1, there exists P ∈ Pµ ⊂ Kn
o that maximizes the

functional. Since µ is a Borel measure and λ is an absolutely continuous Borel measure, we
infer from Theorem 8.2 in [13] that µ = λ(P, ·). □

To conclude, let us prove another Proposition which characterizes the bound on the inner
to outer radius ratio for the solution to the Gauss Image Problem. The existence of the
uniform constant comes from Proposition 3.2.

Proposition 6.2. Suppose µ is a discrete measure that is not concentrated on a closed
hemisphere and λ is an absolutely continuous Borel measure. Suppose µ is weak Aleksandrov
related to λ. Let α be their uniform weak Aleksandrov constant. Then, there exists a polytope
solution P ∈ Pµ to the Gauss Image Problem such that the ratio rP

Rp
is bounded from below

by a constant depending only on vectors vi and the uniform weak Aleksandrov constant α.
Apart from α and vectors vi, this constant is independent of λ.

Proof. By Theorem 1.4, there exists P ∈ Pµ solving the Gauss Image Problem for measures
µ and λ. Consider any sequence of solutions Pn ∈ Pµ, with maxi αn,i = 1, that maximizes
the ratio

(6.22)
mini αn,i

maxi αn,i

.

By compactness, there exists a subsequence converging to the body P ∈ Pµ. Since P still
maximizes the functional, it is a solution by Theorem 8.2 in [13]. Let α be a representation
for P . We also have that maxi αi = 1 and if β is the representation for any other solution
P ′ to the Gauss Image Problem, then

(6.23)
mini αi

maxi αi

≥ mini βi

maxi βi

.

For this P , reorder the index set so that 1 = α1 ≥ α2 ≥ ... ≥ αm > 0. Define Il = {1 . . . l}.
Let k > 1 be the integer such that the vectors {vi | i /∈ Ik} are contained in a closed
hemisphere, but the vectors {vi | i /∈ Ik−1} are not. Clearly, k < m− 1. Then, for any index
set Il with l ≥ k, we have that {vi | i /∈ Il} are contained in a closed hemisphere. Thus, from
Lemma 3.2, we have

(6.24) µ(
"

i/∈Il

vi)) ≤ λ(
"

i/∈Il

(vi)π
2
−α),

where α is the uniform weak Aleksandrov constant.
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Suppose

(6.25) U∗(Il) < L(Il)cos(
π

2
− α).

Then, we are able to apply Lemma 5.2 to find another body Pr such that

Lr(Il) = L(Il)

L∗
r(Il) =

L∗(Il)

U∗(Il)
L(Il) cos(

π

2
− α) > L∗(Il)

(6.26)

Notice that L∗(Il) < L(Il). This, combined with (6.26), gives

(6.27) min
'
Lr(Il)), L

∗
r(Il)

(
> L∗(Il).

So, in particular, if αr is the representation for Pr, then

(6.28) min
i

αr,i = min(L∗
r(Il), Lr(Il)) > L∗(Il) = min

i
αi.

Therefore, we obtain that

(6.29)
mini αr,i

maxi αr,i

>
mini αi

maxi αi

.

Since Φ(Pr) ≥ Φ(P ), we have that Pr is still a solution to the Gauss Image Problem by
Theorem 8.2 from [13]. Therefore, (6.29) contradicts (6.23).

Thus, we obtain that for all l ≥ k the opposite to (6.25) holds, that is

(6.30) U∗(Il) ≥ L(Il)cos(
π

2
− α).

In particular, since 1 = α1 ≥ α2 ≥ ... ≥ αm > 0 we obtain for l ≥ k

(6.31) αl+1 ≥ αl cos(
π

2
− α).

Thus, we obtain

(6.32) αm ≥ αk cos(
π

2
− α)m−k.

And, therefore,

(6.33) min
u∈Sn−1

ρP ∗(u) = αm ≥ αk cos(
π

2
− α)m−k.

Now, consider {vi | i /∈ Ik−1}. Define
(6.34) γ = inf

u∈Sn−1,i/∈Ik−1

uvi.

Since {vi | i /∈ Ik−1} are not contained in a closed hemisphere, we obtain that γ > 0. Thus,
from Lemma 4.2 we have that for all u ∈ Sn−1

ρP ∗(u) =

min
∀i s.t.uvi>0

αi

uvi
≤

min
∀i/∈Ik−1 s.t.uvi>0

αi

uvi
≤

αk

γ
.

(6.35)
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Combining this with equation (6.33) we obtain:

(6.36)
rP
RP

=
rP ∗

RP ∗
=

min ρP ∗(u)

max ρP ∗(u)
≥

αk cos(
π
2
− α)m−k

αk

γ

≥ γ cos(
π

2
− α)m−k.

□

It would be interesting to consider whether the above approach can be used to solve
the Gauss Image Problem with the weak Aleksandrov condition when λ is an absolutely
continuous measure, and no additional discrete conditions are imposed on the measure µ, as
was done in [13] for the classical Aleksandrov condition. The natural approach would be to
discretize µ and to try to invoke Proposition 6.2. Yet, we notice that the bound on the inner
to outer radius ratio for the solution to the discrete problem, obtained in the Proposition
6.2, significantly depends on the structure of this discretization.

Conjecture 6.3. Suppose µ and λ are Borel measures on Sn−1, where λ is absolutely con-
tinuous. If µ is not concentrated on a closed hemisphere and is weakly Aleksandrov related
to λ, then there exists a solution to the Gauss Image Problem.
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