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Introduction
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Minkowski Problem (1903)
What are necessary and sufficient conditions for a Borel measure
on the unit sphere to be the surface area measure of a convex
body?
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What if we concentrate on angles at vertices instead of lengths of
sides?

Alexandrov Problem (1939)
What are necessary and sufficient conditions for a Borel measure
on the unit sphere to be the Alexandrov Integral curvature of a
convex body?
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Defenitions

Kn
o is the set of convex bodies with the center at their interior.

∂K is the boundary of K .
The radial map rK : Sn−1 → ∂K is defined by

rK(u) = ru ∈ ∂K . (1)

By N(K , x), we denote the normal cone of K at x ∈ ∂K , that is the set
of all outer unit normals at x:

N(K , x) = {v ∈ Sn−1 : (y − x) · v ≤ 0 for all y ∈ K}. (2)

We define the radial Gauss image of ω ⊂ Sn−1 as:

αααK(ω) =
!

x∈rK (ω)
N(K , x) ⊂ Sn−1. (3)

The radial Gauss image αααK maps sets of Sn−1 into sets of Sn−1.
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Definitions:
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Definition of the radial Gauss image map αααK mapping sets of Sn−1
to sets of Sn−1. The radial Gauss image map is a composition of
Gauss map with radial map.
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Definition
Alexandrov Integral curvature of a convex body K ∈ Kn

o is a pullback
of the Lebesgue measure on Sn−1 under αααK map. That is, for each
Borel ω ⊂ Sn−1 we define a measure λ(K , ·) where λ is Lebesgue
measure on the sphere and

λ(αααK(ω)) = λ(K ,ω). (4)

Alexandrov integral curvature measures ”the amount of normals”
in a given radial directions. For polytopes in dimension two this
measure is just angles at verticies.
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Suppsoe µ =
m"
i=1

µiδvi . Then, trying to solve the Alexandrov problem

(µ = λ(K , ·)) we can assume that K is a polytope with verticies rP(vi).

While the Discrete Minkowski Problem fixes directions of facets and
their area, the Discrete Alexandrov Problem fixes directions of
vertices and their ”spherical area.” In some sense, this is a dual
problem.
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Necessary conditions
What can λ(K , ·) be? Notice that
αααK(v) ⊂ vπ

2
:= {u ∈ Sn−1 | u · v > cos π

2 = 0}. Hence,
αααK(ω) ⊂ ωπ

2
:=

#
v∈ω{u ∈ Sn−1 : u · v > 0}.
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Notice that Aleksandrov’s integral Curvature for any body K
satisfies the following:

λ(Sn−1) = λ(K , Sn−1). (5)

λ(K ,ω) < λ(ωπ
2
). (6)

where second inequality follows by simple set containment. (To be
fair, λ(K ,ω) ≤ λ(ω

arccos
rK
RK
) < λ(ωπ

2
))
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This exactly provides a necessary condition: 1

Definition
Two Borel measures µ and λ (not necessarily Lebesgue measure)
on Sn−1 are called Alexandrov related if µ(Sn−1) = λ(Sn−1), and for
each compact spherically convex set ω ⊂ Sn−1,

µ(ω) < λ(ωπ
2
). (7)

It turns out to be sufficient:

Theorem (Alexandrov)
Suppose µ is a Borel measures on Sn−1. If µ and Lebesgue measure λ
are Alexandrov related, then there exists a body K ∈ Kn

o such that
µ = λ(K , · ) := λ(αααK(·)).

1The original definition in the Alexandrov paper is different but equivalent. He
only considered λ to be Lebesgue measure. This definition is also a bit different
from the 2019 GIP paper (BLYZZ).
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Up to this point, λ was always the Lebesgue measure on Sn−1. What
happens if we allow different measures instead of λ?

Definition (K. J. Böröczky, E. Lutwak, D. Yang, G. Y. Zhang and
Y. M. Zhao, 2019)
The Gauss image measure of λ via K , is a measure defined as the
pushforward of the λ via map αααK . That is for each borel ω ⊂ Sn−1

λ(αααK(ω)) = λ(K ,ω) (8)

1 λ is spherical Lebesgue measure =⇒ λ(K , ·) is Alexandrov’s
integral curvature

2 λ is Federer’s (n− 1)th curvature measure =⇒ λ(K , ·) is the
surface area measure of Alexandrov-Fenchel-Jessen

3 Dual curvature measures (the dual counterparts of Federer’s
curvature measures) are also Gauss Image Measures
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The Gauss Image problem (K. J. Böröczky, E. Lutwak, D. Yang,
G. Y. Zhang and Y. M. Zhao, 2019)
What are necessary and sufficient conditions for a Borel measure µ
on the unit sphere to be the Gauss image measure of λ via some
K ∈ Kn

o?
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Theorem (K. J. Böröczky, E. Lutwak, D. Yang, G. Y. Zhang and Y.
M. Zhao, 2019)
Suppose µ and λ are Borel measures on Sn−1 and λ is absolutely
continuous. If µ and λ are Alexandrov related, then there exists a
K ∈ Kn

o such that µ = λ(K , ·).

If λ is absolutely continuous and strictly positive on open sets
• =⇒ Alexandrov relation is a necessary assumption.
• =⇒ Solution is unique up to a dilation.

These are different from discrete.

Proposition (K. J. Böröczky, E. Lutwak, D. Yang, G. Y. Zhang and
Y. M. Zhao, 2019)
If λ is an absolutely continuous measure on Sn−1 then λ(K , ·) is a
valuation.
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It is a variational proof. Define:

Φ(K , µ,λ) :=
$

log ρKdµ+

$
log ρK∗dλ. (9)

Then the main steps are:
• Show that if K ∈ Kn

o maximizes Φ(·, µ,λ) then it solves
µ = λ(K , ·).

• Obtain from the Alexandrov relation a ”stronger” version with
uniform constants δ and α:

µ(ω) < (1− δ)λ(ωπ
2−α) (10)

• Using the stronger version, show that if for a given sequence of
bodies Ki, if

rKi
RKi

→ 0 then Φ(Ki, µ,λ) → −∞. (Or equivalently
show that if K is a very thin body then it is far from maximizing
the functional.)

• Complete the proof with compactness argument.
Which parts rely on absolutely continuity? All of the above.
Vadim Semenov (NYU Courant) λ(αααK (ω)) = λ(K,ω) and rK (u) = ru ∈ ∂K. µ,vi - in λ,uj-out, µ = λ(K, ·) 16 / 44



The Discrete Gauss Image Problem
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Given discrete measures µ and λ:

λ =
k%

j=1

λjδuj µ =
m%

i=1

µiδvi . (11)

The Discrete Gauss Image problem
Does there exist a body K ∈ Kn

o such that µ = λ(K , ·).

Proposition (S.)
If µ = λ(K , ·) for some K ∈ Kn

o, then a convex polytope P with vertices at
rK(vi) also satisfies µ = λ(P, ·)

Thus, we might restrict our attention to polytopes Pµ. Where P ∈ Pµ
if and only if P is a convex polytope with vertices rP(vi).
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For this talk
While there is a machinery and technique developed to deal with all
possible discrete measures and the statements hold in much more
generality for the purpose of this talk we are going to restrict the
class to the most simple discrete measures. Equal-weight µ and λ.
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From now on, measures µ and λ are assumed to be the following

λ =
m"
j=1

δuj and µ =
m"
i=1

δvi . The problem has a very simple geometric

statement:
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Discrete Equal-Weight Problem (S.)
Suppose we are given two sets of unit vectors {v1 . . . vm} and
{u1 . . .um}. Suppose {v1 . . . vm} ⊂ Sn−1 are not contained in any
closed hemisphere. What are necessary and sufficient conditions
on vectors vi,uj for the existence of a convex polytope P with
vertices rP(vi), such that every normal cone at each vertex of P
contains exactly one vector from the set {u1 . . .um} in its interior?
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Or alternatively:

Discrete Equal-Weight Problem (S.)
What are necessary and sufficient conditions on vectors vi,uj for
the existence of a convex polytope P with facets in the directions vi,
such that each facet is penetrated in its interior by exactly one ray
{ut | t ≥ 0} where u ∈ {u1 . . .um}?
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Definition (S.)

Given a discrete measure λ and a discrete measure µ, we associate
the set of assignment functions:

Fµ,λ :=
&
f : {1 . . . k} → {1 . . .m} |

%

j∈f−1(i)

λj = µi
'
. (12)

In this talk case Fµ,λ can be thought of as a set of permutations on
the set ofm = k elements. Each function gives an assignment of
normal vector to normal cone at a vertex.

Question
• Does the solution Polytope exist for every assignment function
(permutation)?

This is a proper reformulation of uniqueness question.
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Preparation for the main results
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On the interior assumption of uj ∈ ˚αααP(vσ(i)).
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Turns out Alexandrov condition is not quite right for discrete
measures:

• µ(ω) < λ(ωπ
2
). Classical Alexandrov Condition. Equivalent to

µ(ω) + λ(ω∗) < µ(Sn−1) = λ(Sn−1).
• µ(ω) < (1− δ)λ(ωπ

2−α). GIP 2019 paper
• µ(ω) ≤ λ(ωπ

2−α) where α > 0. (Uniform) What actually happens
if µ = λ(K , ·), where K ∈ Kn

o. (Proof sketch: For any vector v,
αααK(v) ⊂ v

arccos
rK
RK
)

• µ(ω) ≤ λ(ωπ
2
);

where
ωπ

2−α =
!

u∈ω
{v ∈ Sn−1 : u · v > cos(

π

2
− α)}. (13)

There is also a choice between ω being a spherically convex
compact set or any compact set (or some other classes of sets, and
how they relate to each other).
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Measures µ(ω) < λ(ωπ
2
) µ(ω) ≤ λ(ωπ

2
)

λ is Absolutely Continious Good Wrong
Both are Discrete Wrong Good

Definition (S.)
Two discrete measures µ and λ are called weak Alexandrov related
if for each compact spherically convex set ω ⊂ Sn−1, µ(ω) ≤ λ(ωπ

2
).

Proposition (S.)
Suppose discrete µ and λ are weak Alexandrov related. Then there exist
a uniform α > 0 such that for each closed set ω ⊂ Sn−1,
µ(ω) ≤ λ(ωπ

2−α).

This recovers the ”true” condition.
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Recall that αααK(v) ⊂ vπ
2
:= {u ∈ Sn−1 | u · v > cos π

2 = 0}.

Proposition (S.)
Weak Alexandrov relation is a necessary assumption.

Before we even attempt to solve the problem we need to ask the
following question.

Question
Given the weak Alexandrov condition, does there exist an
assignment function σ ∈ Fµ,λ such that ∀j ujvσ(j) > 0?
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If µ and λ are discrete equal-weight then the weak Alexandrov
condition is equivalent to Hall’s Marriage Theorem.

Let G be a finite bipartite graph with bipartite sets of verticies X
(patients) and Y (hospitals).
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Proposition (S.)
Hall’s marriage condition is equivalent to the weak Aleksandrov
condition. In particular, if one of the conditions is satisfied, there exist
an σ ∈ Fµ,λ such that ∀j ujvσ(j) > 0

Making all Alexandrov conditions vary natural as they are
requirements from set containment.
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Definition (S.)
For each σ ∈ Fµ,λ we define the assignment functional

A(σ) :=
k%

j=1

log ujvσ(j), (14)

where the log of negative values is forced to be A(σ) = −∞. If there
exist a solution to the Gauss Image Problem, we call its assignment
function a solution function.
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Main results
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Theorem (Existence and Uniqueness (S.))
Let λ be a discrete equal-weight measure and µ be a discrete measure.
Suppose they are weak Aleksandrov related and µ is not concentrated
on a closed hemisphere. Then, f ∈ Fµ,λ is a solution function if and
only if it is the unique maximizer of the assignment functional. In other
words,

• The assignment functional, A(f ), is maximized at exactly one f ∈ F.
For this f , there exists a polytope P ∈ Pµ such that λ(P, ·) = µ and
uj ∈ ˚αααP(vf (j)).

• Or A(f ) is maximized at more than one f ∈ F, in which case there is
no convex body K ∈ Kn

o such that λ(K , ·) = µ.

A(f ) :=
k%

j=1

log ujvf (j), (15)
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It can be seen that generically (among measures µ and λ satisfying
weak Alexandrov relation) maximizer is unique.2

Geometrically, when is it true that the assignment functional is
uniquely maximized?

2almost everywhere, dense open in regular topology or Zariski topology
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In dimension 2, all counterexamples come from polytopes.
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Definition (S.)
Given two sets of vectors {u1 . . .ul} and {v1 . . . vl} suppose there
exist a piecewise linear closed curve with vertices {x1 . . . xl} such
that

• xi = λivi for some λi > 0
• ui⊥[xi, xi+1] for 1 ≤ i ≤ l − 1
• ul⊥[xl, x1]

This curve is called an edge normal loop of two sets.
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Definition (S.)
We call two sets {u1 . . .uk} and {v1 . . . vk} are to be edge loop free, if
for any σ,σ′ ∈ Sk and given any l such that 2 ≤ l ≤ k, there dose not
exist and edge normal loop for {uσ(1) . . .uσ(l)} and {vσ′(1) . . . vσ′(l)}.

Proposition (S.)
Suppose µ and λ are two equal-weight discrete measures such that
{u1 . . .uk} and {v1 . . . vk} are loop free, then for any σ1,σ2 ∈ Fµ,λ,p

• σ1 = σ2 if and only if A(σ1) = A(σ2).

Corollary (S.)
Suppose µ and λ are two equal-weight discrete measures. Suppose µ
and λ are weak Alexandrov related and that µ is not concentrated on
closed hemisphere. Suppose that {u1 . . .uk} and {v1 . . . vk} are loop
free. Then there exist K ∈ Kn

o such that µ = λ(K , ·).
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There is another way to think about it. Suppose you start with
some convex polytope with vertices rP(vi). Suppose uj ⊂ αααP(vj). Can
you change the vertices along the rays vi, so that uj ⊂ ˚αααP(vj)? If µ
and λ are loop free you can.
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Sketches of the Proofs
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There are two proofs of the main results. Variational proof
(stochastic matrices, Transportation polytopes and
Birkhoff-von-Neumann theorem) and a proof based on Helly’s
theorem and systems of equations.
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Recall, Φ(K , µ,λ) :=
(
log ρKdµ+

(
log ρK∗dλ.

Variational proof skatch:
1 For any f ∈ Fµ,λ we have Φ(K , µ,λ) ≤ −A(f ).
2 Smooth out measure λ to λε. (For small enough smoothing we
have µ(ω) < λε(ωπ

2−α) where α is uniform on ε and ω)
3 Prove the Gauss Image Paper under weak Alexandrov
condition for µ discrete and λ absolutely continious. (S. 2022
other work) One needs to find a solution P such that rP

Rp is
bounded from below by a constant, depending only on vectors
vi and the uniform weak Aleksandrov constant α. Besides
being dependent on α, this constant is independent of λ.

4 Consider sequence Kε of solutions to µ,λε-problem and using
bounds from α etc. show that there exist Kε → P.

5 Prove that Φ(Kε, µ,λε) → Φ(K , µ,λ).
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• This gives (after some geometric computation):

Φ(K , µ,λ) = −
i=m,j=m%

i,j=1

ci,j log(viuj) > 0. (16)

where ci,j is doubly stochastic matrix.

Using Birkhoff-von-Neumann theorem or results on transportation
polytopes obtain that here exist 0 ≤ θf ≤ 1 for f ∈ F, such that"

f∈F θf = 1 and
Φ(K , µ,λ) = −

%

f∈F

θfA(f ). (17)

Combining this with the first result, that for any f ∈ Fµ,λ we have
Φ(K , µ,λ) ≤ −A(f ), we obtain that we only have a sum of
maximizers in Φ(K , µ,λ). Arrive to the conclusion abouts the
behavior of Φ(Kε, µ,λε) and its convergence to obtain the main
theorem.
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Alternative proof of the main result for equal-weight measures:
1 Show that solution exists if and only if the following system of
equations is solvable for ai,j where i ∕= j:

aj,i < xj − xi for i ∕= j ∈ {1 . . .m} (18)

where aj,i = log
ujvi
ujvj

if ujvi
ujvj

> 0, and ai,j = −∞ otherwise.3

2 Show that the identity permutation is the unique maximizer if
and only if for any non-trivial permutation σ on {1 . . .m},

aσ :=
m%

i=1

ai,σ(i) < 0 (19)

3 Using, Helly’s Theorem 4 show that the system is solvable if
and only if for any non-trivial permutation σ on {1 . . .m},

aσ :=
m%

i=1

ai,σ(i) < 0 (20)

3We define ai,i = 0 for convenience.
4Similar system can be seen in Kasia Wyczesany’s works
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Thank you!


